Immersive Virtual System Based on Games for Children’s Fine Motor Rehabilitation

  • Edwin PrunaEmail author
  • Jenny Tigse
  • Alexandra Chuquitarco
  • Ivón Escobar
  • Marco Pilatásig
  • Eddie Daniel Galarza
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10851)


We present a 3D virtual system for children’s fine motor rehabilitation, it is created three environments with the software Unity. These environments generate playful and entertaining backgrounds; several tests for the system operation are performed which include working with children with ages of 5 to 14 years. The results allow to determine the fine motor movements, in addition it is determined that the trajectories made by children’s fingers when performing the games are suitable for fine motor rehabilitation. Finally, the usability test SEQ is also performed, which give us results of (56.4 ± 0.37), this shows the user’s acceptation of the system.


Virtual reality Rehabilitation Motor LeapMotion Oculus rift 



We thank the “Universidad de las Fuerzas Armadas ESPE” for financing the investigation project number 2016-PIC-0017.


  1. 1.
    Newell, K.: Constraints on the development of coordination. In: Wade, M., Whiting, H.T. (eds.) Motor Development in Children: Aspects of Coordination and Control, pp. 341–360. Martinus Nijhoff, Dordrecht (1986)CrossRefGoogle Scholar
  2. 2.
    Kakebeeke, T.H., Lanzi, S., Zysset, A.E., Arhab, A., Messerli-Bürgy, N., Stuelb, K., Munsch, S.: Association between body composition and motor performance in preschool children. Obes. Facts 10(5), 420–431 (2017)CrossRefGoogle Scholar
  3. 3.
    Levtzion-Korach, O., Tennenbaum, A., Schnitzer, R., Ornoy, A.: Early motor development of blind children. J. Paediatr. Child Health 36, 226–229 (2000)CrossRefGoogle Scholar
  4. 4.
    Gheysen, F., Loots, G., Van Waelvelde, H.: Motor development of deaf children with and without cochlear implants. J. Deaf Stud. Deaf Educ. 13, 215–224 (2008)CrossRefGoogle Scholar
  5. 5.
    Feldman, H.M., Chaves-Gnecco, D., Hofkosh, D.: Developmental-behavioral pediatrics. In: Zitelli, B.J., McIntire, S.C., Norwalk, A.J. (eds.) Atlas of Pediatric Diagnosis, 6th edn, Chap. 3, Elsevier Saunders, Philadelphia (2012)Google Scholar
  6. 6.
    Luo, Z., Jose, P.E., Huntsinger, C.S., Pigott, T.D.: Fine motor skills and mathematics achievement in East Asian American and European American kindergartners and first graders. Br. J. Dev. Psychol. 25, 595–614 (2007). Scholar
  7. 7.
    Brookman, A., McDonald, S., McDonald, D., Bishop, D.V.: Fine motor deficits in reading disability and language impairment: same or different? PeerJ 1(3), e217 (2013). Scholar
  8. 8.
    Martzog, P.: Feinmotorische Fertigkeiten und kognitive Fähigkeiten bei Kindern im Vorschulalter [Fine motor skills and cognitive development in preschool children], 1st edn. Tectum, Marburg (2015)Google Scholar
  9. 9.
    Fenollar-Cortés, J., Gallego-Martínez, A., Fuentes, L.J.: The role of inattention and hyperactivity/impulsivity in the fine motor coordination in children with ADHD. Res. Dev. Disabil. 69, 77–84 (2017)CrossRefGoogle Scholar
  10. 10.
    Mayes, S.D., Calhoun, S.L., Learning, A.: Writing, and processing speed in typical children and children with ADHD, autism, anxiety, depression, and oppositional-defiant disorder. Child Neuropsychol. 13(6), 469–493 (2007)CrossRefGoogle Scholar
  11. 11.
    Dinehart, L.H.: Handwriting in early childhood education: current research and future implications. J. Early Childhood Lit. 15(1), 97–118 (2015). Scholar
  12. 12.
    Grissmer, D., Grimm, K., Aiyer, S.: Fine motor skills and early comprehension of the world: two new school readiness indicators. Dev. Psychol. 46(5), 1008–1017 (2010). Scholar
  13. 13.
    De Campos, A.C., da Costa, C.S., Rocha, N.A.: Measuring changes in functional mobility in children with mild cerebral palsy. Devel. Neurorehabil. 14, 140–144 (2011)CrossRefGoogle Scholar
  14. 14.
    Prosser, L.A., Lee, S.C., Barbe, M.F., VanSant, A.F., Lauer, R.T.: Trunk and hip muscle activity in early walkers with and without cerebral palsy – a frequency analysis. J. Electromyogr. Kinesiol. 20, 851–859 (2010)CrossRefGoogle Scholar
  15. 15.
    Galil, A., Carmel, S., Lubetzky, H., Heiman, N.: Compliance with home rehabilitation therapy by parents of children with disabilities in Jews and Bedouin in Israel. Dev. Med. Child Neurol. 43(4), 261–268 (2001)CrossRefGoogle Scholar
  16. 16.
    Mitchell, L., Ziviani, J., Oftedal, S., Boyd, R.: The effect of virtual reality interventions on physical activity in children and adolescents with early brain injuries including cerebral palsy. Dev. Med. Child Neurol. 54, 667–671 (2012)CrossRefGoogle Scholar
  17. 17.
    Snider, L., Majnemer, A., Darsaklis, V.: Virtual reality as a therapeutic modality for children with cerebral palsy. Dev. Neurorehabil. 13, 120–128 (2010)CrossRefGoogle Scholar
  18. 18.
    Levac, D.E., Galvin, J.: When is virtual reality “therapy”? Arch. Phys. Med. Rehabil. 94(795), 8 (2013)Google Scholar
  19. 19.
    Golomb, M.R., McDonald, B.C., Warden, S.J., Yonkman, J., Saykin, A.J., Shirley, B., et al.: In-home virtual reality videogame telerehabilitation in adolescents with hemiplegic cerebral palsy. Arch. Phys. Med. Rehabil. 91, 1–8 (2010)CrossRefGoogle Scholar
  20. 20.
    Shin, J., Song, G., Hwangbo, G.: Effects of conventional neurological treatment and a virtual reality training program on eye-hand coordination in children with cerebral palsy. J. Phys. Ther. Sci. 27(7), 2151–2154 (2015). Scholar
  21. 21.
    Pruna, E., Acurio, A., Tigse, J., Escobar, I., Pilatásig, M., Pilatásig, P.: Virtual system for upper limbs rehabilitation in children. In: De Paolis, L.T., Bourdot, P., Mongelli, A. (eds.) AVR 2017. LNCS, vol. 10325, pp. 107–118. Springer, Cham (2017). Scholar
  22. 22.
    Pruna, E., Acurio, A., Escobar, I., Pérez, S.A., Zumbana, P., Meythaler, A., Álvarez, F.A.: 3D virtual system using a haptic device for fine motor rehabilitation. In: Rocha, Á., Correia, A.M., Adeli, H., Reis, L.P., Costanzo, S. (eds.) WorldCIST 2017. AISC, vol. 570, pp. 648–656. Springer, Cham (2017). Scholar
  23. 23.
    Albiol-Pérez, S., Mena-Cajas, J., Escobar-Anchaguano, I.P., Pruna-Panchi, E.P., Zumbana, P.: Virtual fine rehabilitation in patients with carpal tunnel syndrome using low-cost devices. In Proceedings of the 4th Workshop on ICTs for improving Patients Rehabilitation Research Techniques, pp. 61–64. ACM (2017)Google Scholar
  24. 24.
    Tatla, S.K., Shirzad, N., Lohse, K.R., Virji-Babul, N., Hoens, A.M., Holsti, L., et al.: Therapists’ perceptions of social media and video game technologies in upper limb rehabilitation. JMIR Serious Games. 3(1), e2 (2015). Scholar
  25. 25.
    Chen, Y.P., Kang, L.J., Chuang, T.Y., Doong, J.L., Lee, S.J., Tsai, M.W., Jeng, S.F., Sung, W.H.: Use of virtual reality to improve upper-extremity control in children with cerebral palsy: a single-subject design. Phys. Ther. 87(11), 1441–1457 (2007). Scholar
  26. 26.
    Gil-Gómez, J.A., Gil-Gómez, H., Lozano-Quilis, J.A., Manzano-Hernández, P., Albiol-Pérez, S., Aula-Valero, C.: SEQ: suitability evaluation questionnaire for virtual rehabilitation systems. Application in a virtual rehabilitation system for balance rehabilitation. In: 2013 7th International Conference on Pervasive Computing Technologies for Healthcare and Workshops, Venice, pp. 335–338 (2013)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Edwin Pruna
    • 1
    Email author
  • Jenny Tigse
    • 1
  • Alexandra Chuquitarco
    • 1
  • Ivón Escobar
    • 1
  • Marco Pilatásig
    • 1
  • Eddie Daniel Galarza
    • 1
  1. 1.Universidad de las Fuerzas Armadas ESPESangolquiEcuador

Personalised recommendations