Augmented Reality System for the Complement of Cognitive Therapeutic Exercise in Children: Preliminary Tests
Conference paper
First Online:
Abstract
This paper describes the development of an interactive and motivational tool, to give immersion in the cognitive therapeutic exercise (Perfetti method). This system is implemented with the use of virtual environments developed in the Unity 3D graphic engine. The environments present friendly, novel designs, which are shown to the user in augmented reality with the help of a high-end smartphone and virtual reality headset. In addition, the system helps in the process of recording activities and collecting important data for the monitoring and evolution of the users.
Keywords
Augmented reality Cognitive therapeutic exercise Unity 3DNotes
Acknowledgements
We thank the “Universidad de las Fuerzas Armadas ESPE” for financing the investigation project number 2016-PIC-0017.
References
- 1.Bryan Kolb, I.W.: Fundamentals of Human NeuroPsychology. Macmillan Publishers, Basingstoke (2009)Google Scholar
- 2.De Campos, A.C., da Costa, C.S., Rocha, N.A.: Measuring changes in functional mobility in children with mild cerebral palsy. Dev. Neurorehabil. 14, 140–144 (2011)CrossRefGoogle Scholar
- 3.Prosser, L.A., Lee, S.C., Barbe, M.F., VanSant, A.F., Lauer, R.T.: Trunk and hip muscle activity in early walkers with and without cerebral palsy – a frequency analysis. J. Electromyogr. Kinesiol. 20, 851–859 (2010)CrossRefGoogle Scholar
- 4.Oh, S., Bailenson, J.: Virtual and augmented reality. In: The International Encyclopedia of Media Effects (2017)Google Scholar
- 5.Rodrigues, J., Cardoso, P., Monteiro, J., Figueiredo, M.: Handbook of Research on Human-Computer Interfaces, Developments, and Applications. IGI Global, Hershey (2016)CrossRefGoogle Scholar
- 6.Hwang, G., Wu, P., Chen, C., Tu, N.: Effects of an augmented reality-based educational game on students’ learning achievements and attitudes in real-world observations. In: Interactive Learning Environments, pp. 1895–1906 (2015)CrossRefGoogle Scholar
- 7.Krichenbauer, M., Yamamoto, G., Taketom, T., Sandor, C., Kato, H.: Augmented reality versus virtual reality for 3D object manipulation. IEEE Trans. Vis. Comput. Graph. 24(2), 1038–1048 (2015)CrossRefGoogle Scholar
- 8.Kerdvibulvech, C., Wang, C.-C.: A new 3D augmented reality application for educational games to help children in communication interactively. In: Gervasi, O., et al. (eds.) ICCSA 2016. LNCS, vol. 9787, pp. 465–473. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-42108-7_35CrossRefGoogle Scholar
- 9.Sobota, B., Korečko, Š., Jacho, L., Pastornický, P., Hudák, M., Sivý, M.: Virtual-reality technologies and smart environments in the process of disabled people education. In: Emerging eLearning Technologies and Applications (ICETA) (2017)Google Scholar
- 10.Lin, C., Chang, Y.: Interactive augmented reality using Scratch 2.0 to improve physical activities for children with developmental disabilities. In: Research in Developmental Disabilities, pp. 1–8 (2015)CrossRefGoogle Scholar
- 11.Suzuki, K.: Augmented human technology. In: Sankai, Y., Suzuki, K., Hasegawa, Y. (eds.) Cybernics: Fusion of Human, Machine and Information Systems. LNCS, pp. 111–131. Springer, Tokyo (2014). https://doi.org/10.1007/978-4-431-54159-2_7CrossRefGoogle Scholar
- 12.Serrano, C.V., Bonilla, I., Gomez, F.V., Mendoza, M.: Development of a haptic interface for motor rehabilitation therapy. In: Engineering in Medicine and Biology Society (EMBC), 37th Annual International Conference of the IEEE, pp. 1156–1159 (2005)Google Scholar
- 13.Lin, C., Chai, H., Wang, J., Chen, C., Liu, Y., Chen, C., Lin, C.-W., Huang, Y.-M.: Augmented reality in educational activities for children with disabilities. Displays 42, 51–54 (2016)CrossRefGoogle Scholar
- 14.Robson, N., Faller, K., Ahir, V., Ferreira, A., Buchanan, J.: Creating a virtual perception for upper limb rehabilitation. Int. J. Biomed. Biol. Eng. 11, 152–157 (2017)Google Scholar
- 15.Hsiao, K., Rashvand, H.: Data modeling mobile augmented reality: integrated mind and body rehabilitation. Multimed. Tools Appl. 74, 3543–3560 (2013)CrossRefGoogle Scholar
- 16.Ravi, D., Kumar, N., Singhi, P.: Effectiveness of virtual reality rehabilitation for children and adolescents with cerebral palsy: an updated evidence-based systematic review. Physiotherapy 103, 245–258 (2017)CrossRefGoogle Scholar
- 17.Kolar, P., et al.: Clinical Rehabilitation. Alena Kobesová, Prague (2014)Google Scholar
- 18.De Cecco, M., et al.: Augmented reality to enhance the clinician’s observation during assessment of daily living activities. In: De Paolis, L.T., Bourdot, P., Mongelli, A. (eds.) AVR 2017. LNCS, vol. 10325, pp. 3–21. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-60928-7_1CrossRefGoogle Scholar
- 19.Hatem, S., Saussez, G., Faille, M., Prist, V., Zhang, X., Dispa, D., Bleyenheuft, Y.: Rehabilitation of motor function after stroke: a multiple systematic review focused on techniques to stimulate upper extremity recovery. Front. Hum. Neurosci. (2016)Google Scholar
- 20.Manzanares, M., Galán, C., Morales, N., Guerrero, E.: Sensitive reeducation of the hand. In: Fisioterapia, pp. 114–122 (2004)Google Scholar
- 21.Lv, Z., Esteve, C., Chirivella, J., Gagliardo, P.: A game based assistive tool for rehabilitation of dysphonic patients. In: Virtual and Augmented Assistive Technology (VAAT), pp. 9–14 (2015)Google Scholar
Copyright information
© Springer International Publishing AG, part of Springer Nature 2018