Advertisement

Virtual Simulation of Brain Sylvian Fissure Exploration and Aneurysm Clipping with Haptic Feedback for Neurosurgical Training

  • Sergio Teodoro Vite
  • César Domínguez Velasco
  • Aldo Francisco Hernández Valencia
  • Juan Salvador Pérez Lomelí
  • Miguel Ángel Padilla Castañeda
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10851)

Abstract

The development of simulation systems from surgical procedures has been a research topic in several areas in medicine and engineer applications because it supposes a novel alternative for medical skills acquisition, surgical planning, guide during surgery and postoperative control. At the same time, simulation systems represent significant challenges, regarding conceptual design, mathematical, numeric and computational modelling, and finally the validation of the system. In this paper, we present the advances and methodologies applied for the development of a virtual reality system for medical training in neurosurgery. As the case of study, we present the simulation of an aneurysm clipping procedure in two of the main stages: brain Sylvian fissure exploration and aneurysm clipping.

Notes

Acknowledgements

This work was supported by National Autonomous University of Mexico through its Program of Support to Projects for the Innovation and Improvement of Teaching (PAPIME), projects PE109018 and PE109118.

References

  1. 1.
    Alaraj, A., Luciano, C.J., Bailey, D.P., Elsenousi, A., Roitberg, B.Z., Bernardo, A., Banerjee, P.P., Charbel, F.T.: Virtual reality cerebral aneurysm clipping simulation with real-time haptic feedback. Neurosurgery 11(Suppl 2), 52–58 (2015)Google Scholar
  2. 2.
    Bender, J., Müller, M., Otaduy, M.A., Teschner, M., Macklin, M.: A survey on position-based simulation methods in computer graphics. Comput. Graph. Forum 33, 228–251 (2014)CrossRefGoogle Scholar
  3. 3.
    Bro-Nielsen, M.: Finite element modeling in surgery simulation. Proc. IEEE 86(3), 490–503 (1998)CrossRefGoogle Scholar
  4. 4.
    Bro-Nielsen, M., Cotin, S.: Real-time volumetric deformable models for surgery simulation using finite elements and condensation. Comput. Graph. Forum 15(3), 57 (1996)CrossRefGoogle Scholar
  5. 5.
    Delorme, S., Laroche, D., DiRaddo, R., Del Maestro, R.F.: NeuroTouch: a physics-based virtual simulator for cranial microneurosurgery training. Neurosurgery 71(1 Suppl Operative), 32–42 (2012)Google Scholar
  6. 6.
    Dequidt, J., Coevoet, E., Thinès, L., Duriez, C.: Vascular neurosurgery simulation with bimanual haptic feedback. In: Jaillet, F., Zara, F., Zachmann, G. (eds.) Workshop on Virtual Reality Interaction and Physical Simulation. The Eurographics Association (2015)Google Scholar
  7. 7.
    Faure, F., Duriez, C., Delingette, H., Allard, J., Gilles, B., Marchesseau, S., Talbot, H., Courtecuisse, H., Bousquet, G., Peterlik, I., Cotin, S.: SOFA: a multi-model framework for interactive physical simulation. In: Payan, Y. (ed.) Soft Tissue Biomechanical Modeling for Computer Assisted Surgery. Springer, Heidelberg (2012).  https://doi.org/10.1007/8415_2012_125CrossRefGoogle Scholar
  8. 8.
    Georgii, J., Westermann, R.: Corotated finite elements made fast and stable. In: Faure, F., Teschner, M. (eds.) 2008 Workshop in Virtual Reality Interactions and Physical Simulation “VRIPHYS”. The Eurographics Association (2008)Google Scholar
  9. 9.
    Itkowitz, B., Handley, J., Zhu, W.: The OpenHaptics(TM) Toolkit: A Library for Adding 3D Touch\({}^\wedge \)(TM) Navigation and Haptics to Graphics Applications, January 2005Google Scholar
  10. 10.
    Kersten-Oertel, M., Chen, S.S.J., Drouin, S., Sinclair, D.S., Collins, D.L.: Augmented reality visualization for guidance in neurovascular surgery. Stud. Health Technol. Inform. 173, 225–229 (2012)Google Scholar
  11. 11.
    Lawton, M.T.: Seven Aneurysms: Tenets and Techniques for Clipping. Thieme (2011). https://books.google.com.mx/books?id=wI5kEN8TFpEC
  12. 12.
    Macklin, M., Müller, M., Chentanez, N., Kim, T.-Y.: Unified particle physics for real-time applications. ACM Trans. Graphics 33, 53 (2014)CrossRefGoogle Scholar
  13. 13.
    Mashiko, T., Kaneko, N., Konno, T., Otani, K., Nagayama, R., Watanabe, E.: Training in cerebral aneurysm clipping using self-Made 3-dimensional models. J. Surg. Educ. 74(4), 681–689 (2017)CrossRefGoogle Scholar
  14. 14.
    Musacchio Jr., M.J., Smith, A.P., McNeal, C.A., Munoz, L., Rothenberg, D.M., von Roenn, K.A., Byrne, R.W.: Neuro-critical care skills training using a human patient simulator. Neurocrit. Care 13(2), 169–175 (2010)CrossRefGoogle Scholar
  15. 15.
    Nesmea, M., Faurea, F.: Physically realistic interactive simulation for biological soft tissuesGoogle Scholar
  16. 16.
    Papangelou, A., Ziai, W.: The birth of neuro-simulation. Neurocrit. Care 13(2), 167–168 (2010)CrossRefGoogle Scholar
  17. 17.
    Ryan, J.R., Almefty, K.K., Nakaji, P., Frakes, D.H.: Cerebral aneurysm clipping surgery simulation using patient-specific 3D printing and silicone casting. World Neurosurg. 88, 175–181 (2016)CrossRefGoogle Scholar
  18. 18.
    Yaniv, Z.R., Webster, R.J., Fenz, W., Dirnberger, J.: Real-time surgery simulation of intracranial aneurysm clipping with patient-specific geometries and haptic feedback. In: Proceedings of SPIE, vol. 9415(1), p. 94150H, March 2015Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Sergio Teodoro Vite
    • 1
  • César Domínguez Velasco
    • 1
  • Aldo Francisco Hernández Valencia
    • 2
  • Juan Salvador Pérez Lomelí
    • 1
  • Miguel Ángel Padilla Castañeda
    • 1
  1. 1.Unidad de Investigación y Desarrollo Tecnológico (UIDT), Instituto de Ciencias Aplicadas y Tecnología (ICAT)Universidad Nacional Autónoma de México (UNAM)Mexico CityMexico
  2. 2.Unidad de Neurología y NeurocirugíaHospital General de México (HGM) “Dr. Eduardo Liceaga”Mexico CityMexico

Personalised recommendations