Web-Based Vascular Flow Simulation Visualization with Lossy Data Compression for Fast Transmission

  • Rok Oblak
  • Ciril BohakEmail author
  • Matija Marolt
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10851)


In this paper, we present a web-based system for visualization of flow simulation results in the vascular system for use with consumer-level hardware. The presented tool allows users to design, execute and visualize a flow simulation with a simple workflow on a desktop computer or a mobile device. The web interface allows users to select a vascular model, define the flow simulation parameters, execute the simulation, and interactively visualize the simulation results in real time using multiple visualization techniques. The server-side prepares the model for simulation and performs the simulation using SimVascular. To provide a more efficient transfer of the large amounts of simulation results to the web client, as well as reduce storage requirements on the server, we introduce a novel hybrid lossy compression method. The method uses an octree data subdivision approach combined with an iterative approach that regresses the data points to a B-Spline volume. The evaluation results show that our method achieves compression ratios of up to 5.7 for the tested examples at a given error rate, comparable to other approaches while specifically intended for visualization purposes.


Visualization Toolkit Blood flow simulation Data visualization 


  1. 1.
    Mendis, S., Puska, P., Norrving, B., et al.: Global Atlas on Cardiovascular Disease Prevention and Control. World Health Organization (2011)Google Scholar
  2. 2.
    Doost, S.N., Ghista, D., Su, B., Zhong, L., Morsi, Y.S.: Heart blood flow simulation: a perspective review. Biomed. Eng. Online 15(1), 101 (2016)CrossRefGoogle Scholar
  3. 3.
    Arts, T., et al.: Patient-specific modeling of cardiovascular dynamics with a major role for adaptation. In: Kerckhoffs, R. (ed.) Patient-Specific Modeling of the Cardiovascular System, pp. 21–41. Springer, New York (2010). Scholar
  4. 4.
    Taylor, C.A., Hughes, T.J., Zarins, C.K.: Finite element modeling of blood flow in arteries. Comput. Methods Appl. Mech. Eng. 158(1–2), 155–196 (1998)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Wilson, N., Wang, K., Dutton, R.W., Taylor, C.: A software framework for creating patient specific geometric models from medical imaging data for simulation based medical planning of vascular surgery. In: Niessen, W.J., Viergever, M.A. (eds.) MICCAI 2001. LNCS, vol. 2208, pp. 449–456. Springer, Heidelberg (2001). Scholar
  6. 6.
    Antiga, L., Piccinelli, M., Botti, L., Ene-Iordache, B., Remuzzi, A., Steinman, D.A.: An image-based modeling framework for patient-specific computational hemodynamics. Med. Biol. Eng. Comput. 46(11), 1097 (2008)CrossRefGoogle Scholar
  7. 7.
    Marchenko, Y., Volkau, I., Nowinski, W.L.: Vascular editor: from angiographic images to 3D vascular models. J. Digit. Imaging 23(4), 386–398 (2010)CrossRefGoogle Scholar
  8. 8.
    Kretschmer, J., Godenschwager, C., Preim, B., Stamminger, M.: Interactive patient-specific vascular modeling with sweep surfaces. IEEE Trans. Vis. Comput. Graph. 19(12), 2828–2837 (2013)CrossRefGoogle Scholar
  9. 9.
    Updegrove, A., Wilson, N.M., Merkow, J., Lan, H., Marsden, A.L., Shadden, S.C.: Simvascular: an open source pipeline for cardiovascular simulation. Ann. Biomed. Eng. 45(3), 525–541 (2017)CrossRefGoogle Scholar
  10. 10.
    Zhou, M., Sahni, O., Kim, H.J., Figueroa, C.A., Taylor, C.A., Shephard, M.S., Jansen, K.E.: Cardiovascular flow simulation at extreme scale. Comput. Mech. 46(1), 71–82 (2010)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Meier, S., Hennemuth, A., Tchipev, N., Harloff, A., Markl, M., Preusser, T.: Towards patient-individual blood flow simulations based on PC-MRI measurements. Inform. J. 41, 4–7 (2011)Google Scholar
  12. 12.
    Mazzeo, M., Coveney, P.: HemeLB: a high performance parallel lattice-Boltzmann code for large scale fluid flow in complex geometries. Comput. Phys. Commun. 178(12), 894–914 (2008)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Bernaschi, M., Melchionna, S., Succi, S., Fyta, M., Kaxiras, E., Sircar, J.: MUPHY: a parallel multi physics/scale code for high performance bio-fluidic simulations. Comput. Phys. Commun. 180(9), 1495–1502 (2009)CrossRefGoogle Scholar
  14. 14.
    Köhler, B., Born, S., van Pelt, R.F.P., Hennemuth, A., Preim, U., Preim, B.: A survey of cardiac 4D PC-MRI data processing. Comput. Graph. Forum 36(6), 5–35 (2017)CrossRefGoogle Scholar
  15. 15.
    Anastasi, G., Bramanti, P., Di Bella, P., Favaloro, A., Trimarchi, F., Magaudda, L., Gaeta, M., Scribano, E., Bruschetta, D., Milardi, D.: Volume rendering based on magnetic resonance imaging: advances in understanding the three-dimensional anatomy of the human knee. J. Anat. 211(3), 399–406 (2007)CrossRefGoogle Scholar
  16. 16.
    Ueng, S.K., Sikorski, K., Ma, K.L.: Fast algorithms for visualizing fluid motion in steady flow on unstructured grids. In: Proceedings of the IEEE Conference on Visualization, pp. 313–320 (1995)Google Scholar
  17. 17.
    Schroeder, W., Martin, K., Lorensen, B.: The Visualization Toolkit, 4th edn. Kitware, New York (2006)Google Scholar
  18. 18.
    Jourdain, S., Ayachit, U., Geveci, B.: ParaViewWeb: a web framework for 3D visualization and data processing. Int. J. Comput. Inf. Syst. Ind. Manag. Appl. 3, 870–877 (2011)Google Scholar
  19. 19.
    Lindstrom, P., Isenburg, M.: Fast and efficient compression of floating-point data. IEEE Trans. Vis. Comput. Graph. 12(5), 1245–1250 (2006)CrossRefGoogle Scholar
  20. 20.
    Lindstrom, P.: Fixed-rate compressed floating-point arrays. IEEE Trans. Vis. Comput. Graph. 20(12), 2674–2683 (2014)CrossRefGoogle Scholar
  21. 21.
    Belhadef, L., Maaza, Z.M.: Lossless 4D medical images compression with motion compensation and lifting wavelet transform. Int. J. Signal Process. Syst. 4(2), 168–171 (2016)Google Scholar
  22. 22.
    Sakai, R., Sasaki, D., Obayashi, S., Nakahashi, K.: Wavelet-based data compression for flow simulation on block-structured Cartesian mesh. Int. J. Numer. Methods Fluids 73(5), 462–476 (2013)CrossRefGoogle Scholar
  23. 23.
    Al-Khafaji, G., George, L.E.: Fast lossless compression of medical images based on polynomial. Int. J. Comput. Appl. 70(15), 28–32 (2013)Google Scholar
  24. 24.
    Nguyen, K.G., Saupe, D.: Rapid high quality compression of volume data for visualization. Comput. Graph. Forum 20(3), 49–57 (2001)CrossRefGoogle Scholar
  25. 25.
    754-2008: IEEE standard for floating-point arithmetic. Standard. IEEE, August 2008Google Scholar
  26. 26.
    Sohn, B.S., Bajaj, C., Siddavanahalli, V.: Feature based volumetric video compression for interactive playback. In: Proceedings of the 2002 IEEE Symposium on Volume Visualization and Graphics, VVS 2002, Piscataway, pp. 89–96. IEEE Press (2002)Google Scholar
  27. 27.
    Lehmann, H., Werzner, E., Mendes, M.A.A., Trimis, D., Jung, B., Ray, S.: In situ data compression algorithm for detailed numerical simulation of liquid metal filtration through regularly structured porous media. Adv. Eng. Mater. 15(12), 1260–1269 (2013)CrossRefGoogle Scholar
  28. 28.
    Iverson, J., Kamath, C., Karypis, G.: Fast and effective lossy compression algorithms for scientific datasets. In: Kaklamanis, C., Papatheodorou, T., Spirakis, P.G. (eds.) Euro-Par 2012. LNCS, vol. 7484, pp. 843–856. Springer, Heidelberg (2012). Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Faculty of Computer and Information ScienceUniversity of LjubljanaLjubljanaSlovenia

Personalised recommendations