Advertisement

Signals and Molecular Mechanisms Controlling Lung Stem/Progenitor Cell Development and Behavior

  • Ahmed El-Hashash
Chapter

Abstract

Better characterization and understanding of lung-specific stem cell behavior could lead to the discovery of new restoration solutions for normal and proper lung morphogenesis, repair, and regeneration. Recent data have accumulated on the behavior of these stem and progenitor cells such as self-renewal, fate, apoptosis, and differentiation into various cell types. Furthermore, many recent studies have focused on the modes of lung stem/progenitor cell division and the regulatory mechanisms of different aspects of lung stem/progenitor cell behavior, growth, and development. In this chapter, we describe recent advances on the factors, signals, and molecular mechanisms that control the self-renewing/proliferation, growth, and fate as well as differentiation of lung stem and progenitor cells.

Keywords

Lung Stem cells Cell behavior Cell fate Wnt Notch TGF Signaling pathway Numb Self-renewal Differentiation 

References

  1. Abler, L. L., Mansour, S. L., & Sun, X. (2009). Conditional gene inactivation reveals roles for Fgf10 and Fgfr2 in establishing a normal pattern of epithelial branching in the mouse lung. Developmental Dynamics, 238, 1999–2013.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Ameis, D., Khoshgoo, N., Iwasiow, B. M., Snarr, P., & Keijzer, R. (2017). MicroRNAs in lung development and disease. Paediatric Respiratory Reviews, 22, 38–43.CrossRefPubMedGoogle Scholar
  3. Balasooriya, G., Goschorska, M., Piddini, E., & Rawlins, E. L. (2017). FGFR2 is required for airway basal cell self-renewal and terminal differentiation. Development, 144, 1600–1606.CrossRefPubMedPubMedCentralGoogle Scholar
  4. Balasubramaniam, V., Mervis, C., Maxey, A., Markham, N., & Abman, S. H. (2007). Hyperoxia reduces bone marrow, circulating, and lung endothelial progenitor cells in the developing lung: Implications for the pathogenesis of bronchopulmonary dysplasia. American Journal of Physiology. Lung Cellular and Molecular Physiology, 292, L1073–L1084.CrossRefPubMedGoogle Scholar
  5. Bellusci, S., Grindley, J., Emoto, H., Itoh, N., & Hogan, B. L. (1997). Fibroblast growth factor 10 (FGF10) and branching morphogenesis in the embryonic mouse lung. Development, 124(23), 4867–4878.PubMedGoogle Scholar
  6. Berika, M., Elgayyar, M., & El-Hashash, A. H. (2014). Asymmetric cell divisions of stem cells in the lung and other systems. Frontiers in Cell and Development Biology, 2, 33–42.CrossRefGoogle Scholar
  7. Berika, M., Ku, J., Huang, H., & El-Hashash, A. H. (2016). Gene and signals regulating stem cell fate. In A. El-Hashash (Ed.), Developmental and stem cell biology in health and disease (pp. 36–48). Madison: Bentham Science Publisher, USA.CrossRefGoogle Scholar
  8. Bhaskaran, M., Wang, Y., Zhang, H., et al. (2009). MicroRNA-127 modulates fetal lung development. Physiological Genomics, 37, 268–278.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Buckley, S., Driscoll, B., Anderson, K. D., & Warburton, D. (1997). Cell cycle in alveolar epithelial type II cells: Integration of Matrigel and KGF. The American Journal of Physiology, 273, L572–L580.CrossRefPubMedGoogle Scholar
  10. Buckley, S., Barsky, L., Weinberg, K., & Warburton, D. (2005). In vivo inosine protects alveolar epithelial type 2 cells against hyperoxia-induced DNA damage through MAP kinase signaling. American Journal of Physiology. Lung Cellular and Molecular Physiology, 288, L569–L575.CrossRefPubMedGoogle Scholar
  11. Carraro, G., El-Hashash, A., Guidolin, D., et al. (2009). miR-17 family of microRNAs controls FGF10-mediated embryonic lung epithelial branching morphogenesis through MAPK14 and STAT3 regulation of E-Cadherin distribution. Developmental Biology, 333, 238–250.CrossRefPubMedPubMedCentralGoogle Scholar
  12. Chen, F., Desai, T. J., Qian, J., Niederreither, K., Lü, J., & Cardoso, W. V. (2007). Inhibition of Tgf beta signaling by endogenous retinoic acid is essential for primary lung bud induction. Development, 134, 2969–2979.CrossRefPubMedGoogle Scholar
  13. Chuang, P. T., Kawcak, T., & McMahon, A. P. (2003). Feedback control of mammalian Hedgehog signaling by the Hedgehog-binding protein, Hip1, modulates Fgf signaling during branching morphogenesis of the lung. Genes & Development, 17, 342–347.CrossRefGoogle Scholar
  14. Colvin, J. S., White, A. C., Pratt, S. J., & Ornitz, D. M. (2001). Lung hypoplasia and neonatal death in Fgf9-null mice identify this gene as an essential regulator of lung mesenchyme. Development, 128(11), 2095–2106.PubMedGoogle Scholar
  15. Croce, C. M. (2009). Causes and consequences of microRNA dysregulation in cancer. Nature Reviews. Genetics, 10(10), 704–714.CrossRefPubMedPubMedCentralGoogle Scholar
  16. De Langhe, S. P., Carraro, G., Tefft, D., et al. (2008). Formation and differentiation of multiple mesenchymal lineages during lung development is regulated by beta-catenin signaling. PLoS One, 3, e1516.CrossRefPubMedPubMedCentralGoogle Scholar
  17. del Moral, P. M., De Langhe, S. P., Sala, F. G., et al. (2006). Differential role of FGF9 on epithelium and mesenchyme in mouse embryonic lung. Developmental Biology, 293, 77–89.CrossRefPubMedGoogle Scholar
  18. Ding, Y., Zhao, R., Zhao, X., Matthay, M. A., Nie, H. G., & Ji, H. L. (2017). ENaCs as both effectors and regulators of MiRNAs in lung epithelial development and regeneration. Cellular Physiology and Biochemistry, 44, 1120–1132.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Eblaghie, M. C., Reedy, M., Oliver, T., Mishina, Y., & Hogan, B. L. (2006). Evidence that autocrine signaling through Bmpr1a regulates the proliferation, survival and morphogenetic behavior of distal lung epithelial cells. Developmental Biology, 291, 67–82.CrossRefPubMedGoogle Scholar
  20. El Agha, E., Herold, S., Al Alam, D., et al. (2014). Fgf10-positive cells represent a progenitor cell population during lung development and postnatally. Development, 141, 296–306.CrossRefPubMedPubMedCentralGoogle Scholar
  21. El-Hashash, A. H. (2013). Lung stem cells: Mechanisms of behavior, development and regeneration. Anatomy and Physiology, 3, 119–128.CrossRefGoogle Scholar
  22. El-Hashash, A. H. (2018). Intrinsic vs extrinsic intrinsic regulatory mechanisms of lung stem cell biology and behavior. Journal of Stem Cells, 12, 187–190.Google Scholar
  23. Elshahawy, S., Ibrahim, A., Soliman, S., Berika, M., & El-Hashash, A. H. (2016). Behavior and asymmetric cell divisions of stem cells. In A. El-Hashash (Ed.), Developmental and stem cell biology in health and disease (pp. 81–104). Madison: Bentham Science Publisher, USA.Google Scholar
  24. Fan, T., Wang, W., Zhang, B., et al. (2016). Regulatory mechanisms of microRNAs in lung cancer stem cells. SpringerPlus, 5(1), 1762.CrossRefPubMedPubMedCentralGoogle Scholar
  25. Frank, D. B., Peng, T., Zepp, J., et al. (2016). Emergence of a wave of Wnt signaling that regulates lung alveologenesis through controlling epithelial self-renewal and differentiation. Cell Reports, 17, 2312–2325.CrossRefPubMedPubMedCentralGoogle Scholar
  26. Gao, X., Vockley, C. M., Pauli, F., et al. (2013). Evidence for multiple roles for grainyheadlike 2 in the establishment and maintenance of human mucociliary airway epithelium. Proceedings of the National Academy of Sciences of the United States of America, 110, 9356–9351.CrossRefPubMedPubMedCentralGoogle Scholar
  27. Goss, A. M., Tian, Y., Tsukiyama, T., et al. (2009). Wnt2/2b and beta-catenin signaling are necessary and sufficient to specify lung progenitors in the foregut. Developmental Cell, 17, 290–298.CrossRefPubMedPubMedCentralGoogle Scholar
  28. Goss, A. M., Tian, Y., Cheng, L., et al. (2011). Wnt2 signaling is necessary and sufficient to activate the airway smooth muscle program in the lung by regulating myocardin/Mrtf-B and Fgf10 expression. Developmental Biology, 356, 541–552.CrossRefPubMedPubMedCentralGoogle Scholar
  29. Gupte, V. V., Ramasamy, S. K., Reddy, R., et al. (2009). Overexpression of fibroblast growth factor-10 during both inflammatory and fibrotic phases attenuates bleomycin-induced pulmonary fibrosis in mice. American Journal of Respiratory and Critical Care Medicine, 180, 424–436.CrossRefPubMedPubMedCentralGoogle Scholar
  30. Harris-Johnson, K. S., Domyan, E. T., Vezina, C. M., et al. (2009). beta-Catenin promotes respiratory progenitor identity in mouse foregut. Proceedings of the National Academy of Sciences of the United States of America, 106, 16287–16292.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Hsu, Y. C., Osinski, J., Campbell, C. E., et al. (2011). Mesenchymal nuclear factor I B regulates cell proliferation and epithelial differentiation during lung maturation. Developmental Biology, 354, 242–252.CrossRefPubMedPubMedCentralGoogle Scholar
  32. Ibrahim, A., & El-Hashash, A. H. (2015). Lung stem cell behavior in development and regeneration. Edorium Journal of Stem Cell Research and Therapy, 1, 1–13.Google Scholar
  33. Kimura, S., Hara, Y., Pineau, T., et al. (1996). The T/ebp null mouse: Thyroid-specific enhancer-binding protein is essential for the organogenesis of the thyroid, lung, ventral forebrain, and pituitary. Genes & Development, 10, 60–69.CrossRefGoogle Scholar
  34. Kimura, S., Ward, J. M., & Minoo, P. (1999). Thyroid-specific enhancer-binding protein/thyroid transcription factor 1 is not required for the initial specification of the thyroid and lung primordia. Biochimie, 81, 321–327.CrossRefPubMedGoogle Scholar
  35. Kugler, M. C., Joyner, A. L., Loomis, C. A., & Munger, J. S. (2015). Sonic hedgehog signaling in the lung. From development to disease. American Journal of Respiratory Cell and Molecular Biology., 52(1), 1–13.CrossRefPubMedPubMedCentralGoogle Scholar
  36. Laresgoiti, U., Nikolić, M. Z., Rao, C., Brady, J. L., et al. (2016). Lung epithelial tip progenitors integrate glucocorticoid- and STAT3-mediated signals to control progeny fate. Development, 143, 3686–3699.CrossRefPubMedPubMedCentralGoogle Scholar
  37. Lee, J.-H., Bhang, D. H., Beede, A., et al. (2014). Lung stem cell differentiation in mice directed by endothelial cells via a BMP4-NFATc1-thrombospondin-1 axis. Cell, 156, 440–455.CrossRefPubMedPubMedCentralGoogle Scholar
  38. Li, C., Xiao, J., Hormi, K., et al. (2002). Wnt5a participates in distal lung morphogenesis. Developmental Biology, 248, 68–81.CrossRefPubMedGoogle Scholar
  39. Liu, Y., & Hogan, B. L. (2002). Differential gene expression in the distal tip endoderm of the embryonic mouse lung. Gene Expression Patterns, 2, 229–233.CrossRefPubMedGoogle Scholar
  40. Lu, Y., Thomson, J. M., Wong, H. Y., Hammond, S. M., & Hogan, B. L. (2007). Transgenic over-expression of the microRNA miR-17-92 cluster promotes proliferation and inhibits differentiation of lung epithelial progenitor cells. Developmental Biology, 310, 442–453.CrossRefPubMedPubMedCentralGoogle Scholar
  41. Lu, Y., Okubo, T., Rawlins, E., et al. (2008). Epithelial progenitor cells of the embryonic lung and the role of microRNAs in their proliferation. Proceedings of the American Thoracic Society, 5, 300–304.CrossRefPubMedPubMedCentralGoogle Scholar
  42. Lu, J., & Clark, A. G. (2012). Impact of microRNA regulation on variation in human gene expression. Genome Research, 22(7), 1243–1254.CrossRefPubMedPubMedCentralGoogle Scholar
  43. Lüdtke, T. H., Farin, H. F., Rudat, C., et al. (2013). Tbx2 controls lung growth by direct repression of the cell cycle inhibitor genes Cdkn1a and Cdkn1b. PLoS Genetics, 9, e1003189.CrossRefPubMedPubMedCentralGoogle Scholar
  44. Miller, B. H., & Wahlestedt, C. (2010). MicroRNA dysregulation in psychiatric disease. Brain Research, 1338, 89–99.CrossRefPubMedPubMedCentralGoogle Scholar
  45. Mori, M., Mahoney, J. E., Stupnikov, M. R., et al. (2015). Notch3-Jagged signaling controls the pool of undifferentiated airway progenitors. Development, 142, 258–267.CrossRefPubMedPubMedCentralGoogle Scholar
  46. Morimoto, M., Liu, Z., Cheng, H. T., et al. (2010). Canonical Notch signaling in the developing lung is required for determination of arterial smooth muscle cells and selection of Clara versus ciliated cell fate. Journal of Cell Science, 123, 213–224.CrossRefPubMedPubMedCentralGoogle Scholar
  47. Morrisey, E. E., & Hogan, B. L. M. (2010). Preparing for the first breath: Genetic and cellular mechanisms in lung development. Developmental Cell, 18, 8–23.CrossRefPubMedPubMedCentralGoogle Scholar
  48. Nyeng, P., Norgaard, G. A., Kobberup, S., et al. (2008). FGF10 maintains distal lung bud epithelium and excessive signaling leads to progenitor state arrest, distalization, and goblet cell metaplasia. BMC Developmental Biology, 8, 2.CrossRefPubMedPubMedCentralGoogle Scholar
  49. Okubo, T., Knoepfler, P. S., Eisenman, R. N., et al. (2005). N-myc plays an essential role during lung development as a dosage-sensitive regulator of progenitor cell proliferation and differentiation. Development, 132, 1363–1374.CrossRefPubMedGoogle Scholar
  50. Oliver, J. R., Kushwah, R., Wu, J., et al. (2011). Elf3 plays a role in regulating bronchiolar epithelial repair kinetics following Clara cell-specific injury. Laboratory Investigation, 91, 1514–1529.CrossRefPubMedGoogle Scholar
  51. Omran, A., Elimam, D., & Yin, F. (2013). MicroRNAs: New insights into chronic childhood diseases. BioMed Research International, 2013, 291826.CrossRefPubMedPubMedCentralGoogle Scholar
  52. Pandit, K. V., & Milosevic, J. (2015). MicroRNA regulatory networks in idiopathic pulmonary fibrosis. Biochemistry and Cell Biology, 93(2), 129–137.CrossRefPubMedGoogle Scholar
  53. Pepicelli, C. V., Lewis, P. M., & McMahon, A. P. (1998). Sonic hedgehog regulates branching morphogenesis in the mammalian lung. Current Biology, 8, 1083–1086.CrossRefPubMedGoogle Scholar
  54. Perl, A. K., Wert, S. E., Loudy, D. E., et al. (2005). Conditional recombination reveals distinct subsets of epithelial cells in trachea, bronchi, and alveoli. American Journal of Respiratory Cell and Molecular Biology, 33, v455–v462.CrossRefGoogle Scholar
  55. Plantier, L., Marchand-Adam, S., Antico Arciuch, V. G., et al. (2007). Keratinocyte growth factor protects against elastase-induced pulmonary emphysema in mice. American Journal of Physiology. Lung Cellular and Molecular Physiology, 293, L1230–L1239.CrossRefPubMedGoogle Scholar
  56. Popova, A. P., Bentley, J. K., Anyanwu, A. C., et al. (2012). Glycogen synthase kinase-3ß/ß-catenin signaling regulates neonatal lung mesenchymal stromal cell myofibroblastic differentiation. American Journal of Physiology. Lung Cellular and Molecular Physiology, 303, L439–L438.CrossRefPubMedPubMedCentralGoogle Scholar
  57. Que, J., Okubo, T., Goldenring, J. R., et al. (2007). Multiple dose-dependent roles for Sox2 in the patterning and differentiation of anterior foregut endoderm. Development, 134, 2521–2531.CrossRefPubMedPubMedCentralGoogle Scholar
  58. Quiat, D., & Olson, E. N. (2013). MicroRNAs in cardiovascular disease: From pathogenesis to prevention and treatment. The Journal of Clinical Investigation, 123(1), 11–18.CrossRefPubMedPubMedCentralGoogle Scholar
  59. Ramasamy, S. K., Mailleux, A. A., Gupte, V. V., et al. (2007). Fgf10 dosage is critical for the amplification of epithelial cell progenitors and for the formation of multiple mesenchymal lineages during lung development. Developmental Biology, 307, 237–247.CrossRefPubMedPubMedCentralGoogle Scholar
  60. Ray, P., Devaux, Y., Stolz, D. B., et al. (2003). Inducible expression of keratinocyte growth factor (KGF) in mice inhibits lung epithelial cell death induced by hyperoxia. Proceedings of the National Academy of Sciences of the United States of America, 100, 6098–6103.CrossRefPubMedPubMedCentralGoogle Scholar
  61. Reinhart, B. J., Slack, F. J., Basson, M., Pasquinelli, A. E., Bettinger, J. C., Rougvie, A. E., Horvitz, H. R., & Ruvkun, G. (2000). The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature, 403(6772), 901–906.CrossRefPubMedGoogle Scholar
  62. Rock, J. R., Onaitis, M. W., Rawlins, E. L., et al. (2009). Basal cells as stem cells of the mouse trachea and human airway epithelium. Proceedings of the National Academy of Sciences of the United States of America, 106, 12771–12775.CrossRefPubMedPubMedCentralGoogle Scholar
  63. Rutter, M., Wang, J., Huang, Z., et al. (2010). Gli2 influences proliferation in the developing lung through regulation of cyclin expression. American Journal of Respiratory Cell and Molecular Biology, 42, 615–625.CrossRefPubMedGoogle Scholar
  64. Sato, T., van Es, J. H., Snippert, H. J., et al. (2011a). Paneth cells constitute the niche for Lgr5 stem cells in intestinal crypts. Nature, 469, 415–418.CrossRefPubMedGoogle Scholar
  65. Sato, T., Stange, D. E., Ferrante, M., et al. (2011b). Long-term expansion of epithelial organoids from human Colon, adenoma, adenocarcinoma, and Barrett’s epithelium. Gastroenterology, 141, 1762–1772.CrossRefPubMedGoogle Scholar
  66. Sayed, D., & Abdellatif, M. (2011). MicroRNAs in development and disease. Physiological Reviews, 91(3), 827–887.CrossRefPubMedGoogle Scholar
  67. Schittny, J. C. (2017). Development of the lung. Cell and Tissue Research, 367(3), 427–444.CrossRefPubMedPubMedCentralGoogle Scholar
  68. Serls, A. E., Doherty, S., Parvatiyar, P., et al. (2005). Different thresholds of fibroblast growth factors pattern the ventral foregut into liver and lung. Development, 132, 35–47.CrossRefPubMedGoogle Scholar
  69. Sgantzis, N., Yiakouvaki, A., Remboutsika, E., et al. (2011). HuR controls lung branching morphogenesis and mesenchymal FGF networks. Developmental Biology, 354, 267–279.CrossRefPubMedGoogle Scholar
  70. Shu, W., Lu, M. M., Zhang, Y., et al. (2007). Foxp2 and Foxp1 cooperatively regulate lung and esophagus development. Development, 134, 1991–2000.CrossRefPubMedGoogle Scholar
  71. Snitow, M., Lu, M., Cheng, L., et al. (2016). Ezh2 restricts the smooth muscle lineage during mouse lung mesothelial development. Development, 143, 3733–3741.CrossRefPubMedPubMedCentralGoogle Scholar
  72. Sountoulidis, A., Stavropoulos, A., Giaglis, S., et al. (2012). Activation of the canonical bone morphogenetic protein (BMP) pathway during lung morphogenesis and adult lung tissue repair. PLoS One, 7, e41460.CrossRefPubMedPubMedCentralGoogle Scholar
  73. Spurlin, J. W., III, & Nelson, C. M. (2017). Building branched tissue structures: From single cell guidance to coordinated construction. Philosophical Transactions of the Royal Society B, 372, 20150527.CrossRefGoogle Scholar
  74. Stevens, T., Phan, S., Frid, M. G., et al. (2008). Lung vascular cell heterogeneity: Endothelium, smooth muscle, and fibroblasts. Proceedings of the American Thoracic Society, 5, 783–791.CrossRefPubMedPubMedCentralGoogle Scholar
  75. Takahashi, Y., Izumi, Y., Kohno, M., et al. (2010). Thyroid transcription factor-1 influences the early phase of compensatory lung growth in adult mice. American Journal of Respiratory and Critical Care Medicine, 181, 1397–1406.CrossRefPubMedGoogle Scholar
  76. Tefft, D., Lee, M., Smith, S., et al. (2002). mSprouty2 inhibits FGF10-activated MAP kinase by differentially binding to upstream target proteins. American Journal of Physiology. Lung Cellular and Molecular Physiology, 283, L700–L706.CrossRefPubMedGoogle Scholar
  77. Tefft, D., De Langhe, S. P., Del Moral, P. M., et al. (2005). A novel function for the protein tyrosine phosphatase Shp2 during lung branching morphogenesis. Developmental Biology, 282, 422–431.CrossRefPubMedGoogle Scholar
  78. Tian, Y., Zhang, Y., Hurd, L., Hannenhalli, S., Liu, F., Lu, M. M., & Morrisey, E. E. (2011). Regulation of lung endoderm progenitor cell behavior by miR302/367. Development, 138, 1235–1245.CrossRefPubMedPubMedCentralGoogle Scholar
  79. Tuder, R. M., & Yun, J. H. (2008). Vascular endothelial growth factor the lung: friend or foe. Current Opinion in Pharmacology, 8(3), 255–260 PMC. Web. 20 Feb. 2018.CrossRefPubMedPubMedCentralGoogle Scholar
  80. Volckaert, T., Campbell, A., Dill, E., et al. (2013). Localized Fgf10 expression is not required for lung branching morphogenesis but prevents differentiation of epithelial progenitors. Development, 140, 3731–3742.CrossRefPubMedPubMedCentralGoogle Scholar
  81. Wan, H., Dingle, S., Xu, Y., et al. (2005). Compensatory roles of Foxa1 and Foxa2 during lung morphogenesis. The Journal of Biological Chemistry, 280, 13809–13816.CrossRefPubMedGoogle Scholar
  82. Wang, Y., Tian, Y., Morley, M. P., et al. (2013). Development and regeneration of Sox2+ endoderm progenitors are regulated by a Hdac1/2- Bmp4/Rb1 regulatory pathway. Developmental Cell, 24, 345–358.CrossRefPubMedPubMedCentralGoogle Scholar
  83. Wang, X., Wang, Y., Snitow, M. E., et al. (2016). Expression of histone deacetylase 3 instructs alveolar type I cell differentiation by regulating a Wnt signaling niche in the lung. Developmental Biology, 414, 161–169.CrossRefPubMedPubMedCentralGoogle Scholar
  84. Warburton, D., Schwarz, M., Tefft, D., et al. (2000). The molecular basis of lung morphogenesis. Mech Dev, 92, 55–81.CrossRefPubMedGoogle Scholar
  85. Warburton, D., El-Hashash, A., Carraro, G., et al. (2010). Lung organogenesis. Current Topics in Developmental Biology, 90, 73–158.CrossRefPubMedPubMedCentralGoogle Scholar
  86. Watson, J. K., Rulands, S., Wilkinson, A. C., et al. (2015). Clonal dynamics reveal two distinct populations of basal cells in slow-turnover airway epithelium. Cell Reports, 12, 90–101.CrossRefPubMedPubMedCentralGoogle Scholar
  87. Weaver, M., Yingling, J. M., Dunn, N. R., et al. (1999). Bmp signaling regulates proximal-distal differentiation of endoderm in mouse lung development. Development, 126, 4005–4015.PubMedGoogle Scholar
  88. Yin, Y., Wang, F., & Ornitz, D. M. (2011). Mesothelial- and epithelial-derived FGF9 have distinct functions in the regulation of lung development. Development, 138, 3169–3177.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Ahmed El-Hashash
    • 1
  1. 1.The University of Edinburgh-Zhejiang International campus (UoE-ZJU Institute), and Centre of Stem Cell and Regenerative Medicine Schools of Medicine & Basic Medicine, Zhejiang UniversityHainingChina

Personalised recommendations