Diversity of Lung Stem and Progenitor Cell Types

  • Ahmed El-Hashash


Stem cells are multipotent/pluripotent source of a wide range of cell lineages that are crucial for tissue development, repair, and regeneration. They are undifferentiated cells that can characteristically self-renew and develop into different cell types that perform various functions in the human body. Stem cells play critical roles in body development and growth through childhood. Recent data indicate that pools of adult stem cells are also important in some examples of the repair and regeneration in adult tissues. Stem cells can self-renew to maintain the tissue-specific pool of stem cells and differentiate into various functionally specialized cell types. Considerable data have accumulated in recent years on the characterization, isolation, and function of stem/progenitor cells in the lung. In this book chapter, we describe accumulated data on the localization, characterization, biology, and function of different lung stem cell populations such as alveolar, bronchial, and tracheal epithelial cells, as well as endogenous mesenchymal stem/progenitor cells.


Lung Alveolar epithelium Stem cells Bronchial Tracheal epithelial cells Mesenchymal cells 


  1. Bellusci, S., Henderson, R., Winnier, G., Oikawa, T., & Hogan, B. L. (1996). Evidence from normal expression and targeted misexpression that bone morphogenetic protein (Bmp-4) plays a role in mouse embryonic lung morphogenesis. Development, 122, 1693–1702.PubMedGoogle Scholar
  2. Blaisdell, C. J., Gail, D. B., & Nabel, E. G. (2009). National heart, lung, and blood institute perspective: Lung progenitor and stem cells--gaps in knowledge and future opportunities. Stem Cells, 27(9), 2263–2270.Google Scholar
  3. Borthwick, D. W., Shahbazian, M., Krantz, Q. T., Dorin, J. R., & Randell, S. H. (2001). Evidence for stem-cell niches in the tracheal epithelium. American Journal of Respiratory Cell and Molecular Biology, 24, 662–670.CrossRefPubMedGoogle Scholar
  4. Buckley, S., Barsky, L., Driscoll, B., Weinberg, K., Anderson, K. D., & Warburton, D. (1998). Apoptosis and DNA damage in type 2 alveolar epithelial cells cultured from hyperoxic rats. The American Journal of Physiology, 274(5 Pt 1), L714–L720.PubMedGoogle Scholar
  5. Chapman, H. A., Li, X., Alexander, J. P., Brumwell, A., Lorizio, W., Tan, K., Sonnenberg, A., Wei, Y., & Vu, T. H. (2011). Integrin α6β4 identifies an adult distal lung epithelial population with regenerative potential in mice. The Journal of Clinical Investigation, 121(7), 2855–2862.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Chen, H., Matsumoto, K., Brockway, B. L., Rackley, C. R., Liang, J., Lee, J. H., Jiang, D., Noble, P. W., Randell, S. H., Kim, C. F., & Stripp, B. R. (2012a). Airway epithelial progenitors are region specifi c and show differential responses to bleomycin-induced lung injury. Stem Cells, 30(9), 1948–1960.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Chen, L., Acciani, T., Le Cras, T., Lutzko, C., & Perl, A. K. (2012b). Dynamic regulation of platelet-derived growth factor receptor alpha expression in alveolar fi broblasts during realveolarization. American Journal of Respiratory Cell and Molecular Biology, 47(4), 517–527.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Chen, F., & Fine, A. (2016). Stem cells in lung injury and repair. The American Journal of Pathology, 186, 2544–2550.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Clark, J., Alvarez, D. F., Alexeyev, M., King, J. A., Huang, L., Yoder, M. C., & Stevens, T. (2008). Regulatory role for nucleosome assembly protein-1 in the proliferative and vasculogenic phenotype of pulmonary endothelium. American Journal of Physiology. Lung Cellular and Molecular Physiology, 294(3), L431–L439.CrossRefPubMedGoogle Scholar
  10. Cole, B. B., Smith, R. W., Jenkins, K. M., Graham, B. B., Reynolds, P. R., & Reynolds, S. D. (2010). Tracheal basal cells: A facultative progenitor cell pool. The American Journal of Pathology, 177(1), 362–376.CrossRefPubMedPubMedCentralGoogle Scholar
  11. De Langhe, S. P., Carraro, G., Warburton, D., Hajihosseini, M. K., & Bellusci, S. (2006). Levels of mesenchymal FGFR2 signaling modulate smooth muscle progenitor cell commitment in the lung. Developmental Biology, 299, 52–62.CrossRefPubMedGoogle Scholar
  12. del Moral, P. M., De Langhe, S. P., Sala, F. G., et al. (2006). Differential role of FGF9 on epithelium and mesenchyme in mouse embryonic lung. Developmental Biology, 293, 77–89.CrossRefPubMedGoogle Scholar
  13. Desai, T. J., Brownfield, D. G., & Krasnow, M. A. (2014). Alveolar progenitor and stem cells in lung development, renewal and cancer. Nature, 1–16.Google Scholar
  14. Driscoll, B., Buckley, S., Bui, K. C., Anderson, K. D., & Warburton, D. (2000). Telomerase in alveolar epithelial development and repair. American Journal of Physiology. Lung Cellular and Molecular Physiology, 279, L1191–L1198.CrossRefPubMedGoogle Scholar
  15. El-Hashash, A. H. (2013). Lung stem cells: Mechanisms of behavior, development and regeneration. Anatomy and Physiology, 3, 119–128.CrossRefGoogle Scholar
  16. Elshahawy, S., Ibrahim, A., Soliman, S., Berika, M., & El-Hashash, A. H. (2016). Behavior and asymmetric cell divisions of stem cells. In A. El-Hashash (Ed.), Developmental and stem cell biology in health and disease (pp. 81–104). Madison: Bentham Science Publisher, USA.Google Scholar
  17. Engelhardt, J. F. (2001). Stem cell niches in the mouse airway. American Journal of Respiratory Cell and Molecular Biology, 24, 649–652.CrossRefPubMedGoogle Scholar
  18. Evans, M. J., Cabral, L. J., Stephens, R. J., & Freeman, G. (1975). Transformation of alveolar type 2 cells to type 1 cells following exposure to NO2. Experimental and Molecular Pathology, 22, 142–150.CrossRefPubMedGoogle Scholar
  19. Evans, M. J., Shami, S. G., Cabral-Anderson, L. J., & Dekker, N. P. (1986). Role of nonciliated cells in renewal of the bronchial epithelium of rats exposed to NO2. The American Journal of Pathology, 123(1), 126–133.PubMedPubMedCentralGoogle Scholar
  20. Evans, M. J., Van Winkle, L. S., Fanucchi, M. V., & Plopper, C. G. (2001). Cellular and molecular characteristics of basal cells in airway epithelium. Experimental Lung Research, 27(5), 401–415.CrossRefPubMedGoogle Scholar
  21. Giangreco, A., Reynolds, S. D., & Stripp, B. R. (2002). Terminal bronchioles harbor a unique airway stem cell population that localizes to the bronchoalveolar duct junction. The American Journal of Pathology, 161, 173–182.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Giangreco, A., Shen, H., Reynolds, S. D., et al. (2004). Molecular phenotype of airway side population cells. American Journal of Physiology. Lung Cellular and Molecular Physiology, 286, L624–L630.CrossRefPubMedGoogle Scholar
  23. Goss, A. M., Tian, Y., Cheng, L., et al. (2011). Wnt2 signaling is necessary and sufficient to activate the airway smooth muscle program in the lung by regulating myocardin/Mrtf-B and Fgf10 expression. Developmental Biology, 356, 541–552.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Green, M. D., Huang, S. X., & Snoeck, H. W. (2013). Stem cells of the respiratory system: From identification to differentiation into functional epithelium. BioEssays, 35, 261–270.CrossRefPubMedGoogle Scholar
  25. Hackett, T. L., Shaheen, F., Johnson, A., et al. (2008). Characterization of side population cells from human airway epithelium. Stem Cells, 26, 2576–2585.CrossRefPubMedPubMedCentralGoogle Scholar
  26. Hegab, A. E., Ha, V. L., Gilbert, J. L., et al. (2011). Novel stem/progenitor cell population from murine tracheal submucosal gland ducts with multipotent regenerative potential. Stem Cells, 29, 1283–1293.CrossRefPubMedPubMedCentralGoogle Scholar
  27. Hogan, B. L. (1999). Morphogenesis. Cell, 96(2), 225–233.CrossRefPubMedGoogle Scholar
  28. Hong, K. U., Reynolds, S. D., Watkins, S., et al. (2004). Basal cells are a multipotent progenitor capable of renewing the bronchial epithelium. The American Journal of Pathology, 164, 577–588.CrossRefPubMedPubMedCentralGoogle Scholar
  29. Ibrahim, A., & El-Hashash, A. H. (2015). Lung stem cell behavior in development and regeneration. Edorium Journal of Stem Cell Research and Therapy, 1, 1–13.Google Scholar
  30. Irwin, D., Helm, K., Campbell, N., et al. (2007). Neonatal lung side population cells demonstrate endothelial potential and are altered in response to hyperoxia-induced lung simplification. American Journal of Physiology. Lung Cellular and Molecular Physiology, 293, L941–L951.CrossRefPubMedGoogle Scholar
  31. Jackson, S.-R., Lee, J., Reddy, R., Williams, G. N., Kikuchi, A., Freiberg, Y., Warburton, D., & Driscoll, B. (2011). Partial pneumonectomy of telomerase null mice carrying shortened telomeres initiates cell growth arrest resulting in a limited compensatory growth response. American Journal of Physiology. Lung Cellular and Molecular Physiology, 300(6), L898–L909.CrossRefPubMedPubMedCentralGoogle Scholar
  32. Jakkula, M., Le Cras, T. D., Gebb, S., Hirth, K. P., Tuder, R. M., Voelkel, N. F., & Abman, S. H. (2000). Inhibition of angiogenesis decreases alveolarization in the developing rat lung. American Journal of Physiology. Lung Cellular and Molecular Physiology, 279(3), L600–L607.CrossRefPubMedGoogle Scholar
  33. Jiang, J. X., & Li, L. (2009). Potential therapeutic application of adult stem cells in acute respiratory distress syndrome. Chinese Journal of Traumatology, 12, 228–233.PubMedGoogle Scholar
  34. Kim, N., & Vu, T. H. (2006). Parabronchial smooth muscle cells and alveolar myofibroblasts in lung development. Birth Defects Research. Part C, Embryo Today, 78, 80–89.CrossRefPubMedGoogle Scholar
  35. Kim, C. F., Jackson, E. L., Woolfenden, A. E., et al. (2005). Identification of bronchioalveolar stem cells in normal lung and lung cancer. Cell, 121, 823–835.CrossRefGoogle Scholar
  36. Lama, V. N., & Phan, S. H. (2006). The extrapulmonary origin of fibroblasts: Stem/progenitor cells and beyond. Proceedings of the American Thoracic Society, 3(4), 373–376.CrossRefPubMedPubMedCentralGoogle Scholar
  37. Lama, V. N., Harada, H., Badri, L. N., Flint, A., Hogaboam, C. M., McKenzie, A., Martinez, F. J., Toews, G. B., Moore, B. B., & Pinsky, D. J. (2006). Obligatory role for interleukin-13 in obstructive lesion development in airway allografts. The American Journal of Pathology, 169, 47–60.CrossRefPubMedPubMedCentralGoogle Scholar
  38. Li, F., He, J., Wei, J., Cho, W. C., & Liu, X. (2015). Diversity of epithelial stem cell types in adult lung. Stem Cells International, 2015, 728307.PubMedPubMedCentralGoogle Scholar
  39. Liu, X., & Engelhardt, J. F. (2008). The glandular stem/progenitor cell niche in airway development and repair. Proceedings of the American Thoracic Society, 5(6), 682–688.CrossRefPubMedPubMedCentralGoogle Scholar
  40. Liu, C., Glasser, S. W., Wan, H., et al. (2002). GATA-6 and thyroid transcription factor-1 directly interact and regulate surfactant protein-C gene expression. The Journal of Biological Chemistry, 277, 4519–4525.CrossRefPubMedGoogle Scholar
  41. Liu, X., Driskell, R. R., & Engelhardt, J. F. (2007). Stem cells in the lung. Methods in Enzymology. Author manuscript; Available in PMC 2007 Feb 22. Published in final edited form as: Methods Enzymol. 2006, 419, 285–321.Google Scholar
  42. Lu, Y., Okubo, T., Rawlins, E., et al. (2008). Epithelial progenitor cells of the embryonic lung and the role of microRNAs in their proliferation. Proceedings of the American Thoracic Society, 5, 300–304.CrossRefPubMedPubMedCentralGoogle Scholar
  43. Mailleux, A. A., Kelly, R., Veltmaat, J. M., et al. (2005). Fgf10 expression identifies parabronchial smooth muscle cell progenitors and is required for their entry into the smooth muscle cell lineage. Development, 132, 2157–2166.CrossRefPubMedGoogle Scholar
  44. McDowell, E. M., Newkirk, C., & Coleman, B. (1985). Development of hamster tracheal epithelium: II. Cell proliferation in the fetus. The Anatomical Record, 213, 448–456.CrossRefPubMedGoogle Scholar
  45. McQualter, J. L., Yuen, K., Williams, B., & Bertoncello, I. (2010). Evidence of an epithelial stem/progenitor cell hierarchy in the adult mouse lung. Proceedings of the National Academy of Sciences of the United States of America, 107(4), 1414–1419.CrossRefPubMedPubMedCentralGoogle Scholar
  46. Morrison, S. J1., & Kimble, J. (2006). Asymmetric and symmetric stem-cell divisions in development and cancer. Nature, 441(7097), 1068–1074.CrossRefPubMedGoogle Scholar
  47. Okubo, T., Knoepfler, P. S., Eisenman, R. N., et al. (2005). N-myc plays an essential role during lung development as a dosage-sensitive regulator of progenitor cell proliferation and differentiation. Development, 132, 1363–1374.CrossRefPubMedGoogle Scholar
  48. Perl, A. K., Wert, S. E., Loudy, D. E., et al. (2005). Conditional recombination reveals distinct subsets of epithelial cells in trachea, bronchi, and alveoli. American Journal of Respiratory Cell and Molecular Biology, 33, v455–v462.CrossRefGoogle Scholar
  49. Plopper, C., St George, J., Cardoso, W., et al. (1992). Development of airway epithelium. Patterns of expression for markers of differentiation. Chest, 101, 2S–5S.PubMedGoogle Scholar
  50. Que, J., Wilm, B., Hasegawa, H., et al. (2008). Mesothelium contributes to vascular smooth muscle and mesenchyme during lung development. Proceedings of the National Academy of Sciences of the United States of America, 105, 16626–16630.CrossRefPubMedPubMedCentralGoogle Scholar
  51. Ramasamy, S. K., Mailleux, A. A., Gupte, V. V., et al. (2007). Fgf10 dosage is critical for the amplification of epithelial cell progenitors and for the formation of multiple mesenchymal lineages during lung development. Developmental Biology, 307, 237–247.CrossRefPubMedPubMedCentralGoogle Scholar
  52. Rawlins, E. L., & Hogan, B. L. (2006). Epithelial stem cells of the lung: Privileged few or opportunities for many? Development, 133, 2455–2465.CrossRefPubMedGoogle Scholar
  53. Rawlins, E. L., Ostrowski, L. E., Randell, S. H., et al. (2007). Lung development and repair: Contribution of the ciliated lineage. Proceedings of the National Academy of Sciences of the United States of America, 104, 410–417.CrossRefPubMedGoogle Scholar
  54. Rawlins, E. L., Clark, C. P., Xue, Y., et al. (2009a). The Id2+ distal tip lung epithelium contains individual multipotent embryonic progenitor cells. Development, 136, 3741–3745.CrossRefPubMedPubMedCentralGoogle Scholar
  55. Rawlins, E. L., Okubo, T., Xue, Y., et al. (2009b). The role of Scgb1a1+ Clara cells in the long-term maintenance and repair of lung airway, but not alveolar, epithelium. Cell Stem Cell, 4, 525–534.CrossRefPubMedPubMedCentralGoogle Scholar
  56. Reddy, R., Buckley, S., Doerken, M., et al. (2004). Isolation of a putative progenitor subpopulation of alveolar epithelial type 2 cells. American Journal of Physiology. Lung Cellular and Molecular Physiology, 286, L658–L657.CrossRefPubMedGoogle Scholar
  57. Reynolds, S. D., Giangreco, A., Power, J. H., et al. (2000). Neuroepithelial bodies of pulmonary airways serve as a reservoir of progenitor cells capable of epithelial regeneration. The American Journal of Pathology, 156, 269–278.CrossRefPubMedPubMedCentralGoogle Scholar
  58. Reynolds, S. D., Giangreco, A., Hong, K. U., et al. (2004). Airway injury in lung disease pathophysiology: Selective depletion of airway stem and progenitor cell pools potentiates lung inflammation and alveolar dysfunction. American Journal of Physiology. Lung Cellular and Molecular Physiology, 287, L1256–L1265.CrossRefPubMedGoogle Scholar
  59. Rock, J. R., & Hogan, B. L. (2011). Epithelial progenitor cells in lung development, maintenance, repair, and disease. Annual Review of Cell and Developmental Biology, 27, 493–512.CrossRefPubMedGoogle Scholar
  60. Rock, J. R., Onaitis, M. W., Rawlins, E. L., et al. (2009). Basal cells as stem cells of the mouse trachea and human airway epithelium. Proceedings of the National Academy of Sciences of the United States of America, 106, 12771–12775.CrossRefPubMedPubMedCentralGoogle Scholar
  61. Rock, J. R., Randell, S. H., & Hogan, B. L. (2010). Airway basal stem cells: A perspective on their roles in epithelial homeostasis and remodeling. Disease Models & Mechanisms, 3, 545–556.CrossRefGoogle Scholar
  62. Roper, J. M1., Mazzatti, D. J., Watkins, R. H., Maniscalco, W. M., Keng, P. C., & O’Reilly, M. A. (2004). In vivo exposure to hyperoxia induces DNA damage in a population of alveolar type II epithelial cells. American Journal of Physiology. Lung Cellular and Molecular Physiology, 286(5), L1045–L1054.Google Scholar
  63. Seymour, P. A., Freude, K. K., Tran, M. N., et al. (2007). SOX9 is required for maintenance of the pancreatic progenitor cell pool. Proceedings of the National Academy of Sciences of the United States of America, 104, 1865–1870.CrossRefPubMedPubMedCentralGoogle Scholar
  64. Shan, L., Subramaniam, M., Emanuel, R. L., et al. (2008). Centrifugal migration of mesenchymal cells in embryonic lung. Developmental Dynamics, 237, 750–757.CrossRefPubMedPubMedCentralGoogle Scholar
  65. Shu, W., Guttentag, S., Wang, Z., et al. (2005). Wnt/beta-catenin signaling acts upstream of N-myc, BMP4, and FGF signaling to regulate proximal-distal patterning in the lung. Developmental Biology, 283, 226–239.CrossRefPubMedGoogle Scholar
  66. Sun, R., Zhou, Q., Ye, X., Takahata, T., Ishiguro, A., Kijima, H., Nukiwa, T., & Saijo, Y. (2013). A change in the number of CCSP (pos)/SPC(pos) cells in mouse lung during development, growth, and repair. Respiratory Investigation, 51, 229–240.CrossRefPubMedGoogle Scholar
  67. Vaughan, A. E., Brumwell, A. N., Xi, Y., et al. (2015). Lineage-negative progenitors mobilize to regenerate lung epithelium after major injury. Nature, 517, 621–625.CrossRefPubMedGoogle Scholar
  68. Warburton, D., El-Hashash, A., Carraro, G., et al. (2010). Lung organogenesis. Current Topics in Developmental Biology, 90, 73–158.CrossRefPubMedPubMedCentralGoogle Scholar
  69. Yamashita, Y. M. (2009). Regulation of asymmetric stem cell division: Spindle orientation and the centrosome. Frontiers in Bioscience (Landmark Ed)., 14, 3003–3011.CrossRefPubMedCentralGoogle Scholar
  70. Zhou, Q., Law, A. C., Rajagopal, J., et al. (2007). A multipotent progenitor domain guides pancreatic organogenesis. Developmental Cell, 13, 103–114.CrossRefPubMedGoogle Scholar
  71. Zuo, W., Zhang, T., Wu, D. Z., et al. (2014). p63+Krt5+ distal airway stem cells are essential for lung regeneration. Nature, 517, 616–620.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Ahmed El-Hashash
    • 1
  1. 1.The University of Edinburgh-Zhejiang International campus (UoE-ZJU Institute), and Centre of Stem Cell and Regenerative Medicine Schools of Medicine & Basic Medicine, Zhejiang UniversityHainingChina

Personalised recommendations