Advertisement

Simulation System Based on Augmented Reality for Optimization of Training Tactics on Military Operations

  • Fabricio Amaguaña
  • Brayan Collaguazo
  • Jonathan Tituaña
  • Wilbert G. Aguilar
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10850)

Abstract

In this article, we proposed an augmented reality system that was developed in Unity-Vuforia. The system simulates a war environment using three-dimensional objects and audiovisual resources to create a real war conflict. Vuforia software makes use of the database for the creation of the target image and, in conjunction with the Unity video game engine resources, animation algorithms are developed and implemented in 3D objects. That is used at the hardware level are physical images and a camera of a mobile device that combined with the programming allows to visualize the interaction of the objects through the recognition and tracking of images, said algorithms are belonging to Vuforia. The system allows the user to interact with the physical field and the digital objects through the virtual button. To specify, the system was tested and designed for mobile devices that have the Android operating system as they show acceptable performance and easy integration of applications.

Keywords

Military strategy Augmented reality Warlike simulator 

References

  1. 1.
    Aguilar, W.G., Abad, V., Ruiz, H., Aguilar, J., Aguilar-Castillo, F.: RRT-based path planning for virtual bronchoscopy simulator. In: De Paolis, L.T., Bourdot, P., Mongelli, A. (eds.) AVR 2017. LNCS, vol. 10325, pp. 155–165. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-60928-7_13CrossRefGoogle Scholar
  2. 2.
    Aguilar, W.G., Morales, S., Ruiz, H., Abad, V.: RRT* GL based path planning for virtual aerial navigation. In: De Paolis, L.T., Bourdot, P., Mongelli, A. (eds.) AVR 2017. LNCS, vol. 10324, pp. 176–184. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-60922-5_13CrossRefGoogle Scholar
  3. 3.
    Aguilar, W.G., Morales, S.: 3D environment mapping using the kinect V2 and path planning based on RRT algorithms. Electronics 5(4), 70 (2016)CrossRefGoogle Scholar
  4. 4.
    Aguilar, W.G., Morales, S., Ruiz, H., Abad, V.: RRT* GL based optimal path planning for real-time navigation of UAVs. In: Rojas, I., Joya, G., Catala, A. (eds.) IWANN 2017. LNCS, vol. 10306, pp. 585–595. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-59147-6_50CrossRefGoogle Scholar
  5. 5.
    Livingston, M.A., Rosenblum, L.J., Julier, S.J., Brown, D., Baillot, Y., Swan II, J.E., Gabbard, J.L., Hix, D.: An augmented reality system for military operations in urban terrain. In: Proceedings of Interservice/Industry Training, Simulation & Education Conference (I/ITSEC), Orlando, Florida, 2–5 December, p. 89 (abstract only) (2002)Google Scholar
  6. 6.
    Hicks, J., Flanagan, R., Petrov, P., Stoyen, A.: Eyekon: Distributed Augmented Reality for Soldier Teams. © Copyright 21st Century Systems, Inc. (2003)Google Scholar
  7. 7.
    Juhnke, J., Kallish, A., Delaney, D., Dziedzic, K., Chou, R., Chapel, T.: Tanagram Partners. Final Project Report. Aiding Complex Decision Making through Augmented Reality: iARM, an Intelligent Augmented Reality Model (2010)Google Scholar
  8. 8.
    Quintero, A.: Augmented reality on the battlefield, October 2013. http://gglassday.com/3103/la-realidad-aumentada-en-el-campo-de-batalla/
  9. 9.
    Callejas, M., Quiroga, J., Alarcón, A.: Interactive environment for tourist sites, implementing augmented reality layar. Technological University of BogotáGoogle Scholar
  10. 10.
    Perez, C.P.: Virtual reality: a real contribution for the evaluation and treatment of people with intellectual disability, Santiago (2008)Google Scholar
  11. 11.
    García, R.: Serious games with augmented reality for evaluation and rehabilitation of persons with disabilities (2012)Google Scholar
  12. 12.
    Aguilar, W.G., Rodríguez, G.A., Álvarez, L., Sandoval, S., Quisaguano, F., Limaico, A.: Real-time 3D modeling with a RGB-D camera and on-board processing. In: De Paolis, L.T., Bourdot, P., Mongelli, A. (eds.) AVR 2017. LNCS, vol. 10325, pp. 410–419. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-60928-7_35CrossRefGoogle Scholar
  13. 13.
    Aguilar, W.G., Rodríguez, G.A., Álvarez, L., Sandoval, S., Quisaguano, F., Limaico, A.: Visual SLAM with a RGB-D camera on a quadrotor UAV using on-board processing. In: Rojas, I., Joya, G., Catala, A. (eds.) IWANN 2017. LNCS, vol. 10306, pp. 596–606. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-59147-6_51CrossRefGoogle Scholar
  14. 14.
    Aguilar, W.G., Rodríguez, G.A., Álvarez, L., Sandoval, S., Quisaguano, F., Limaico, A.: On-board visual SLAM on a UGV using a RGB-D camera. In: Huang, Y., Wu, H., Liu, H., Yin, Z. (eds.) ICIRA 2017. LNCS (LNAI), vol. 10464, pp. 298–308. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-65298-6_28CrossRefGoogle Scholar
  15. 15.
    Carracedo, J., Martínez, C.L.: Augmented Reality: An Alternative, Nicaragua (2012)Google Scholar
  16. 16.
    Moralejo, L., Sanz, C.V., Pesado, P., Baldassarri, S.: Advances in the design of an author tool for the creation of educational activities based on augmented reality. Sedici, La Plata (2014)Google Scholar
  17. 17.
    Kato, H., Blanding, R., Azuma, R.: Image processing and the Artoolkit. Osgart project, ArtoolworksGoogle Scholar
  18. 18.
    Orbea, D., Moposita, J., Aguilar, W.G., Paredes, M., León, G., Jara-Olmedo, A.: Math model of UAV multi rotor prototype with fixed wing aerodynamic structure for a flight simulator. In: De Paolis, L.T., Bourdot, P., Mongelli, A. (eds.) AVR 2017. LNCS, vol. 10324, pp. 199–211. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-60922-5_15CrossRefGoogle Scholar
  19. 19.
    Aguilar, W.G., Angulo, C.: Real-time model-based video stabilization for microaerial vehicles. Neural Process. Lett. 43(2), 459–477 (2016)CrossRefGoogle Scholar
  20. 20.
    Aguilar, W.G., Angulo, C.: Real-time video stabilization without phantom movements for micro aerial vehicles. EURASIP J. Image Video Process. 1, 1–13 (2014)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Fabricio Amaguaña
    • 1
  • Brayan Collaguazo
    • 1
  • Jonathan Tituaña
    • 1
  • Wilbert G. Aguilar
    • 1
    • 2
  1. 1.CICTE Research CenterUniversidad de las Fuerzas Armadas ESPESangolquíEcuador
  2. 2.GREC Research GroupUniversitat Politècnica de CatalunyaBarcelonaSpain

Personalised recommendations