Conservation and Management of Romanian Forest Genetic Resources in the Context of Climate Change

  • Dragoș PostolacheEmail author
  • Alexandru Lucian Curtu
  • Neculae Şofletea
  • Flaviu Popescu
Part of the Advances in Global Change Research book series (AGLO, volume 65)


Forest genetic resources (FGR) of Romania harbour high genetic diversity although human impact, during the last two centuries, has strongly affected forest ecosystem composition and structure. Dynamic in situ conservation of FGR was the first choice approach to conserve the adaptation potential in natural populations of target tree species by selecting most representative and valuable populations. However, only 17 FGR growing in extreme environmental conditions have been selected and incorporated into the National Catalogue of Forest Genetic Resources. Establishment of new FGR in marginal tree populations that are close to the xeric limit of speciesʼ natural distribution should be extended. Almost half of tree populations selected for adaptation and included in the National Catalogue of Basic Materials for Production of Forest Reproductive Materials are represented by oak species, which is explained by lack of natural regeneration in the last decades. The shortage of native forest reproductive material of oak species (e.g. Quercus robur, Q. pedunculiflora, Q. pubescens) remains one of the biggest challenges in the conservation and management of rear edge oak populations in Romania. Molecular fingerprinting of FGR should constitute an important tool for genetic monitoring of evolutionary changes and to assist ecological reconstruction of fragmented tree populations. Collaboration with neighboring countries is an important aspect for dynamic conservation of FGR and their sustainable management.


Forest genetic resources Climate change Adaptation Genetic monitoring Romania 



The research was supported by national program (DESFOR) of the Ministry of National Education and Scientific Research of Romania (PN16330201).


  1. Andronache, I., Fensholt, R., Ahammer, H., Ciobotaru, A.-M., Pintilii, R.-D., Peptenatu, D., et al. (2017). Assessment of textural differentiations in forest resources in Romania using fractal analysis. Forests, 8, 54.CrossRefGoogle Scholar
  2. Apostol, E. N., Dinu, C. G., Apostol, B., Ciuvăț, A. L., Lorenț, A., Pleșca, I., et al. (2016). Importance of pubescent oak (Quercus pubescens Willd.) for Romanian forests in the context of climate change. Revista de Silvicultură și Cinegetică, 21, 29–33.Google Scholar
  3. Barbu, I., Barbu, C., Curcă, M., & Ichim, V. (2016). Adaptarea pădurilor României la schimbările climatice (pp. 378). Voluntari, Ilfov: Editura Silvica.Google Scholar
  4. Bertini, G., Amoriello, T., Fabbio, G., & Piovosi, M. (2011). Forest growth and climate change: Evidences from the ICP-Forests intensive monitoring in Italy. iForest-Biogeosciences and Forestry, 4, 262.CrossRefGoogle Scholar
  5. Bouriaud, L., Bouriaud, O., Elkin, C., Temperli, C., Reyer, C., Duduman, G., et al. (2015). Age-class disequilibrium as an opportunity for adaptive forest management in the Carpathian Mountains, Romania. Regional Environmental Change, 15, 1557–1568.CrossRefGoogle Scholar
  6. Budeanu, M., Stuparu, E., & Tănăsie, Ş. (2016). Identificarea de noi resurse genetice forestiere de cvercinee cu adaptabilitate ridicată. Revista de Silvicultură și Cinegetică, 21, 6.Google Scholar
  7. Christensen, J. H., Kanikicharla, K. K., Marshall, G., & Turner, J. (2013). Climate phenomena and their relevance for future regional climate change. Cambridge: Cambridge University Press.Google Scholar
  8. Curtu, A. L., Şofletea, N., Toader, A.-V., Enescu, M., Moldovan, C., & Chesnoiu, E.-N. (2009). Stejarul brumăriu: Specie sau unitate intraspecifică a stejarului pedunculat. Revista pădurilor, 124, 7.Google Scholar
  9. Davis, M. B., & Shaw, R. G. (2001). Range shifts and adaptive responses to Quaternary climate change. Science, 292, 673–679.CrossRefPubMedCentralGoogle Scholar
  10. Fady, B., Cottrell, J., Ackzell, L., Alía, R., Muys, B., Prada, A., et al. (2016). Forests and global change: What can genetics contribute to the major forest management and policy challenges of the twenty-first century? Regional Environmental Change, 16, 927–939.CrossRefGoogle Scholar
  11. Filippos, A. (2016). Conservation and monitoring of tree genetic resources in temperate forests. Current Forestry Reports, 2, 119–129.CrossRefGoogle Scholar
  12. Hampe, A., & Petit, R. J. (2005). Conserving biodiversity under climate change: The rear edge matters. Ecology Letters, 8, 461–467.CrossRefPubMedCentralGoogle Scholar
  13. Hanewinkel, M., Cullmann, D. A., Schelhaas, M.-J., Nabuurs, G.-J., & Zimmermann, N. E. (2013). Climate change may cause severe loss in the economic value of European forest land. Nature Climate Change, 3, 203–207.CrossRefGoogle Scholar
  14. Hewitt, G. (2004). Genetic consequences of climatic oscillations in the quaternary. Philosophical transactions of the Royal Society of London. Series B: Biological Sciences, 359, 183–195.Google Scholar
  15. Jump, A. S., & Penuelas, J. (2005). Running to stand still: Adaptation and the response of plants to rapid climate change. Ecology Letters, 8, 1010–1020.CrossRefGoogle Scholar
  16. Jump, A. S., Mátyás, C., & Peñuelas, J. (2009). The altitude-for-latitude disparity in the range retractions of woody species. Trends in Ecology & Evolution, 24, 694–701.CrossRefGoogle Scholar
  17. Kelleher, C., de Vries, S., Baliuckas, V., Bozzano, M., Frýdl, J., Gonzalez Goicoechea, P., et al. (2015). Approaches to the conservation of Forest genetic resources in Europe in the context of climate change. European Forest Genetic Resources Programme (EUFORGEN) (Vol. xiv, p. 3). Rome: Bioversity International.Google Scholar
  18. Kremer, A., Potts, B. M., & Delzon, S. (2014). Genetic divergence in forest trees: Understanding the consequences of climate change. Functional Ecology, 28, 22–36.CrossRefGoogle Scholar
  19. Lefevre, F., Koskela, J., Hubert, J., Kraigher, H., Longauer, R., Olrik, D. C., et al. (2013). Dynamic conservation of forest genetic resources in 33 European countries. Conservation Biology: The Journal of the Society for Conservation Biology, 27, 373–384.CrossRefGoogle Scholar
  20. Loarie, S. R., Duffy, P. B., Hamilton, H., Asner, G. P., Field, C. B., & Ackerly, D. D. (2009). The velocity of climate change. Nature, 462, 1052–1055.CrossRefPubMedCentralGoogle Scholar
  21. Magri, D., Vendramin, G. G., Comps, B., Dupanloup, I., Geburek, T., Gömöry, D., et al. (2006). A new scenario for the quaternary history of European beech populations: Palaeobotanical evidence and genetic consequences. New Phytologist, 171, 199–221.CrossRefPubMedCentralGoogle Scholar
  22. Marx, A., Bastrup-Birk, A., Louwagie, G., Wugt-Larsen, F., Biala, K., Füssel, H.-M., et al. (2017). Terrestrial ecosystems, soil and forests. European Environment Agency (EEA) Report, 1, 30.Google Scholar
  23. Mátyás, C. (2010). Forecasts needed for retreating forests. Nature, 464, 1271.CrossRefPubMedCentralGoogle Scholar
  24. Mátyás, C., Berki, I., Czúcz, B., Gálos, B., Móricz, N., & Rasztovits, E. (2010). Future of beech in Southeast Europe from the perspective of evolutionary ecology. Acta Silv Lign Hung, 6, 91–110.Google Scholar
  25. Moldovan, I. C., Sofletea, N., Curtu, A. L., Abrudan, I. V., Postolache, D., & Popescu, F. (2010). Chloroplast DNA diversity of oak species in Eastern Romania. Notulae Botanicae, Horti Agrobotanici, Cluj-Napoca, 38, 302–307.Google Scholar
  26. Munteanu, C., Nita, M. D., Abrudan, I. V., & Radeloff, V. C. (2016). Historical forest management in Romania is imposing strong legacies on contemporary forests and their management. Forest Ecology and Management, 361, 179–193.CrossRefGoogle Scholar
  27. Nicotra, A. B., Atkin, O. K., Bonser, S. P., Davidson, A. M., Finnegan, E., Mathesius, U., et al. (2010). Plant phenotypic plasticity in a changing climate. Trends in Plant Science, 15, 684–692.CrossRefGoogle Scholar
  28. Pârnuţă, G., Stuparu, E., Budeanu, M., Scărlătescu, V., Marica, F. M., Lalu, I., et al. (2011). Catalogul naţional al resurselor genetice forestiere (pp. 5–522). Bucureşti: Editura Silvică.Google Scholar
  29. Pârnuţă, G., Budeanu, M., Stuparu, E., Scărlătescu, V., Chesnoiu, E., Tudoroiu, M., et al. (2012). Catalogul naţional al materialelor de bază pentru producerea materialelor forestiere de reproducere. Bucureşti: Editura Silvică.Google Scholar
  30. Parry, M. L. (2007). Climate Change 2007: Impacts, adaptation and vulnerability: Contribution of Working Group II to the fourth assessment report of the Intergovernmental Panel on Climate Change (Vol. 4). Cambridge: Cambridge University Press.Google Scholar
  31. Petit, R. J., Brewer, S., Bordács, S., Burg, K., Cheddadi, R., Coart, E., et al. (2002). Identification of refugia and post-glacial colonisation routes of European white oaks based on chloroplast DNA and fossil pollen evidence. Forest Ecology and Management, 156, 49–74.CrossRefGoogle Scholar
  32. Piotti, A., Leonarduzzi, C., Postolache, D., Bagnoli, F., Spanu, I., Brousseau, L., et al. (2017). Unexpected scenarios from Mediterranean refugial areas: Disentangling complex demographic dynamics along the Apennine distribution of silver fir. Journal of Biogeography, 44, 1547–1558.CrossRefGoogle Scholar
  33. Plomion, C., Bastien, C., Bogeat-Triboulot, M.-B., Bouffier, L., Déjardin, A., Duplessis, S., et al. (2016). Forest tree genomics: 10 achievements from the past 10 years and future prospects. Annals of Forest Science, 73, 77–103.CrossRefGoogle Scholar
  34. Popescu, F., & Postolache, D. (2009). Variabilitatea genetică a populaţiilor de cvercinee din România, rezultat al interacţiunii dintre evoluţia postglaciară a vegetaţiei şi influenţele antropice. Revista pădurilor, 124, 49–54.Google Scholar
  35. Popescu, F., Postolache, D., & Pitar, D. (2015). Aspecte privind conservarea şi managementul resurselor genetice forestiere din România. Revista de Silvicultură și Cinegetică, 21, 13–17.Google Scholar
  36. Postolache, D., Popescu, F., Pitar, D., Apostol, E., Iordan, A., Avram, A., et al. (2016). Origin, evolution and genetic structure of Silver fir stands of Romania evaluated through molecular markers. Revista de Silvicultură si Cinegetică, 21, 8–14.Google Scholar
  37. Postolache, D., Popescu, F., Paule, L., Ballian, D., Zhelev, P., Farcas, S., et al. (2017). Unique postglacial evolution of the hornbeam (Carpinus betulus L.) in the Carpathians and the Balkan Peninsula revealed by chloroplast DNA. Science of the Total Environment, 599, 1493–1502.CrossRefPubMedCentralGoogle Scholar
  38. Pravalie, R., Sîrodoev, I., & Peptenatu, D. (2014). Detecting climate change effects on forest ecosystems in Southwestern Romania using Landsat TM NDVI data. Journal of Geographical Sciences, 24, 815–832.CrossRefGoogle Scholar
  39. Şofletea, N., & Curtu, L. (2007). Dendrologie. Braşov: Editura Universităţii “Transilvania”.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Dragoș Postolache
    • 1
    • 2
    Email author
  • Alexandru Lucian Curtu
    • 3
  • Neculae Şofletea
    • 4
  • Flaviu Popescu
    • 5
  1. 1.National Institute for Research and Development in Forestry “Marin Drăcea”Cluj-NapocaRomania
  2. 2.University of Agricultural Sciences and Veterinary MedicineCluj-NapocaRomania
  3. 3.Department of Forest SciencesTransilvania University of BraşovBraşovRomania
  4. 4.Faculty of Silviculture and Forest EngineeringTransilvania University of BraşovBraşovRomania
  5. 5.National Institute for Research and Development in Forestry “Marin Drăcea”SimeriaRomania

Personalised recommendations