Phenotypic Plasticity of European Beech from International Provenance Trial in Serbia

  • Dijana ČortanEmail author
  • Marina Nonić
  • Mirjana Šijačić-Nikolić
Part of the Advances in Global Change Research book series (AGLO, volume 65)


European beech (Fagus sylvatica L.) is a common forest tree species in Europe, distributed across environmentally and climatically diverse regions, resulting in wide natural diversity. Considering its wide distribution and the fact that it is drought-susceptible species, beech received a lot of attention recently, in the light of global warming. Consequently, the provenance trial will provide valuable information about genetic variation patterns of the species, the level of local adaptation to changes in environmental conditions as well as information about the amount of adaptive traits plasticity of the studied species within two research periods. The plastic response of provenance morphological traits depends on differences in climatic conditions of the test site and seed origin, showing changes only if the shift happens towards warmer/drier climate, where higher plasticity were showed in older plants within drier conditions. The presented result also show the existence of considerable genetic variation among European beech provenances, even between provenances that originated from the same geographical region, where genetic differentiation among studied provenances showed an ecotypic pattern. The results show that phenotypic differentiation among populations is not always obvious. The existence of significant genetic variation within and among studied provenances could be crucial to beech adaptations processes in terms of changing climate conditions.


Fagus sylvatica L. Provenance trial Phenotypic plasticity Morphological traits Ecodistance transfer 



The performed research was conducted within the project “Establishment of forest plantations to increase the afforested areas in Serbia” (TR31041) and project “Studying climate change and its influence on the environment: impacts, adaptation and mitigation” (43007) financed by the Ministry of Education, Science and Technological Development of the Republic of Serbia. Many thanks to English Professor Jelena Mladjenović for language revision.


  1. Ackerly, D. D., Dudley, S. A., Sultan, S. E., Schmitt, J., Coleman, J. S., Linder, C. R., et al. (2000). The evolution of plant ecophysiological traits: Recent advances and future directions: New research addresses natural selection, genetic constraints, and the adaptive evolution of plant ecophysiological traits. BioScience, 50(11), 979–995.CrossRefGoogle Scholar
  2. Balaguer, L., Martínez-Ferri, E., Valladares, F., Pérez-Corona, M. E., Baquedano, F. J., Castillo, F. J., & Manrique, E. (2001). Population divergence in the plasticity of the response of Quercus coccifera to the light environment. Functional Ecology, 15(1), 124–135.CrossRefGoogle Scholar
  3. Bolte, A., Czajkowski, T., & Kompa, T. (2007). The north-eastern distribution range of European beech—A review. Forestry, 80(4), 413–429.CrossRefGoogle Scholar
  4. Bolte, A., Czajkowski, T., Cocozza, C., Tognetti, R., de Miguel, M., Pšidová, E., et al. (2016). Desiccation and mortality dynamics in seedlings of different European beech (Fagus sylvatica L.) populations under extreme drought conditions. Frontiers in Plant Science, 7, 751.CrossRefPubMedGoogle Scholar
  5. Catoni, R., Gratani, L., & Varone, L. (2012). Physiological, morphological and anatomical trait variations between winter and summer leaves of Cistus species. Flora-Morphology, Distribution, Functional Ecology of Plants, 207(6), 442–449.CrossRefGoogle Scholar
  6. Chmura, D. J., & Rozkowski, R. (2002). Variability of beech provenances in spring and autumn phenology. Silvae Genetica, 51(2–3), 123–127.Google Scholar
  7. Čortan, D., Šijačić-Nikolić, M., & Knežević, R. (2013). Variability of leaves morphological traits in black poplar (Populus nigra L.) from two populations in Vojvodina. Šumarstvo, 65, 193–202.Google Scholar
  8. Čortan, D., Šijačić-Nikolić, M., & Knežević, R. (2014). Variability of morphometric leaf characteristics of Black poplar from the area of Vojvodina. Glasnik Sumarskog Fakulteta, 109, 63–72.CrossRefGoogle Scholar
  9. Čortan, D., Tubić, B., Šijačić-Nikolić, M., & Borota, D. (2015). Variability of black poplar (Populus nigra L.) leaf morphology in Vojvodina, Serbia. Šumarski List, 139(5–6), 245–251.Google Scholar
  10. Davis, M. B., Shaw, R. G., & Etterson, J. R. (2005). Evolutionary responses to changing climate. Ecology, 86(7), 1704–1714.CrossRefGoogle Scholar
  11. Dempster, M., Dunlop, P., Scheib, A., & Cooper, M. (2013). Principal component analysis of the geochemistry of soil developed on till in Northern Ireland. Journal of Maps, 9(3), 373–389.CrossRefGoogle Scholar
  12. Devetaković, J., & Šijačić-Nikolić, M. (2013). Variability of morphometric characteristics of the leaves of European white elm from the area of great war island. Glasnik Šumarskog Fakulteta, 107, 57–69.Google Scholar
  13. Fang, J., & Lechowicz, M. J. (2006). Climatic limits for the present distribution of beech (Fagus L.) species in the world. Journal of Biogeography, 33(10), 1804–1819.CrossRefGoogle Scholar
  14. Fotelli, M. N., Nahm, M., Radoglou, K., Rennenberg, H., Halyvopoulos, G., & Matzarakis, A. (2009). Seasonal and interannual ecophysiological responses of beech (Fagus sylvatica) at its south-eastern distribution limit in Europe. Forest Ecology and Management, 257(3), 1157–1164.CrossRefGoogle Scholar
  15. Fusco, G., & Minelli, A. (2010). Phenotypic plasticity in development and evolution: Facts and concepts. Philosophical Transactions of the Royal Society B, 365, 547–556.CrossRefGoogle Scholar
  16. Gessler, A., Keitel, C., Kreuzwieser, J., Matyssek, R., Seiler, W., & Rennenberg, H. (2007). Potential risks for European beech (Fagus sylvatica L.) in a changing climate. Trees, 21(1), 1–11.CrossRefGoogle Scholar
  17. Gömöry, D. (2009). Geographic patterns in the reactions of beech provenances to transfer. Report for COST E52 meeting, Thessaloniki, Greece, p. 8.Google Scholar
  18. Gömöry, D., Paule, L., & Vysny, J. (2007). Patterns of allozyme variation in western Eurasian Fagus. Botanical Journal of the Linnean Society, 154, 165–174.CrossRefGoogle Scholar
  19. Gratani, L., Meneghini, M., Pesoli, P., & Crescente, M. F. (2003). Structural and functional plasticity of Quercus ilex seedlings of different provenances in Italy. Trees, 17(6), 515–521.CrossRefGoogle Scholar
  20. Gratani, L. (2014). Plant phenotypic plasticity in response to environmental factors. Advances in Botany, 2014, 208747.CrossRefGoogle Scholar
  21. Hansen, J., Ruedy, R., Sato, M., & Lo, K. (2006). GISS surface temperature analysis. Global temperature trends: 2005 summation. New York: NASA Goddard Institute for Space Studies and Columbia University Earth Institute.Google Scholar
  22. Hatziskakis, S., Tsiripidis, I., & Papageorgiou, A. C. (2011). Leaf morphological variation in beech (Fagus sylvatica L.) populations in Greece and its relation to their post-glacial origin. Botanical Journal of the Linnean Society, 165(4), 422–436.CrossRefGoogle Scholar
  23. Horváth, A., & Mátyás, C. (2016). The decline of vitality caused by increasing drought in a beech provenance trial predicted by juvenile growth. South-east European forestry, 7(1), 21–28.Google Scholar
  24. Ivanković, M., Bogdan, S., & Božič, G. (2008). European Beech (Fagus Sylvatica L.) height growth variability in Croatian and Slovenian provenance trials. Šumarski List, 132(11–12), 529–541.Google Scholar
  25. Ivanković, M., Popović, M., Katičić, I., Wuehlisch, G. V., & Bogdan, S. (2011). Kvantitativna genetska varijabilnost provenijencija obične bukve (Fagus sylvatica L.) iz jugoistočne Europe. Šumarski List, 135(13), 25–36.Google Scholar
  26. Jahn, G. (1991). Temperate deciduous forests of Europe. In E. Rohrig & B. Ulrich (Eds.), Ecosystems of the world 7. Temperate deciduous forests (pp. 377–502). London: Elsevier.Google Scholar
  27. Jarni, K., Westergren, M., Kraigher, H., & Brus, R. (2011). Morphological variability of Fraxinus angustifolia Vahl in the north-western Balkans. Acta Societatis Botanicorum Poloniae, 80(3), 245–252.CrossRefGoogle Scholar
  28. Jazbec, A., Šegotić, K., Ivanković, M., Marjanović, H., & Perić, S. (2007). Ranking of European beech provenances in Croatia using statistical analysis and analytical hierarchy process. Forestry, 80(2), 151–162.CrossRefGoogle Scholar
  29. Kramer, K., Degen, B., Buschbom, J., Hickler, T., Thuiller, W., Sykes, M. T., & de Winter, W. (2010). Modelling exploration of the future of European beech (Fagussylvatica L.) under climate change—Range, abundance, genetic diversity and adaptive response. Forest Ecology and Management, 259(11), 2213–2222.CrossRefGoogle Scholar
  30. Lamy, J. B., Delzon, S., Bouche, P. S., Alia, R., Vendramin, G. G., Cochard, H., & Plomion, C. (2014). Limited genetic variability and phenotypic plasticity detected for cavitation resistance in a Mediterranean pine. New Phytologist, 201(3), 874–886.CrossRefGoogle Scholar
  31. Lindner, M., Maroschek, M., Netherer, S., Kremer, A., Barbati, A., Garcia-Gonzalo, J., et al. (2010). Climate change impacts, adaptive capacity, and vulnerability of European forest ecosystems. Forest Ecology and Management, 259(4), 698–709.CrossRefGoogle Scholar
  32. Mátyás, C., Bozic, G., Gömöry, D., Ivankovic, M., & Rasztovits, E. (2009). Transfer analysis reveals macroclimatic adaptation of European beech (Fagus sylvatica L.). Acta Silvatica et Lignaria Hungarica, 5, 47–62.Google Scholar
  33. Mátyás, C., Berki, I., Czúcz, B., Gálos, B., Móricz, N., & Rasztovits, E. (2010). Future of beech in Southeast Europe from the perspective of evolutionary ecology. Acta Silvatica et Lignaria Hungarica, 6, 91–110.Google Scholar
  34. Nicotra, A. B., Atkin, O. K., Bonser, S. P., Davidson, A. M., Finnegan, E. J., Mathesius, U., et al. (2010). Plant phenotypic plasticity in a changing climate. Trends in Plant Science, 15(12), 684–692.CrossRefGoogle Scholar
  35. Nielsen, C. N., & Jørgensen, F. V. (2003). Phenology and diameter increment in seedlings of European beech (Fagus sylvatica L.) as affected by different soil water contents: Variation between and within provenances. Forest Ecology and Management, 174(1), 233–249.CrossRefGoogle Scholar
  36. Paridari, I. C., Jalali, S. G., Sonboli, A., Zarafshar, M., & Bruschi, P. (2013). Leaf macro-and micro-morphological altitudinal variability of Carpinus betulus in the Hyrcanian forest (Iran). Journal of Forestry Research, 24(2), 301–307.CrossRefGoogle Scholar
  37. Peuke, A. D., Schraml, C., Hartung, W., & Rennenberg, H. (2002). Identification of drought-sensitive beech ecotypes by physiological parameters. New Phytologist, 154(2), 373–387.CrossRefGoogle Scholar
  38. Rose, L., Leuschner, C., Köckemann, B., & Buschmann, H. (2009). Are marginal beech (Fagus sylvatica L.) provenances a source for drought tolerant ecotypes? European Journal of Forest Research, 128(4), 335–343.CrossRefGoogle Scholar
  39. Šijačić-Nikolić, M., Milovanović, J., Nonić, M., Knežević, R., & Babić, V. (2012). Ecotypical characterization of genetic variation of beech provenances from South-Eastern Europe based on the morphometric characteristics of leaves. Glasnik Sumarskog Fakulteta, 106, 197–214.CrossRefGoogle Scholar
  40. Šijačić-Nikolić, M., Milovanović, J., Nonić, M., Knežević, R., & Stanković, D. (2013). Leaf morphometric characteristics variability of different beech provenances in juvenile development stage. Genetika, 45(2), 369–380.CrossRefGoogle Scholar
  41. Stojanović, D. B., Kržič, A., Matović, B., Orlović, S., Duputie, A., Djurdjević, V., Galic, Z., & Stojnić, S. (2013). Prediction of the European beech (Fagus sylvatica L.) xeric limit using a regional climate model: An example from southeast Europe. Agricultural and Forest Meteorology, 176, 94–103.CrossRefGoogle Scholar
  42. Stojnić, S., Orlović, S., Miljković, D., Galić, Z., Kebert, M., & von Wuehlisch, G. (2015). Provenance plasticity of European beech leaf traits under differing environmental conditions at two Serbian common garden sites. European Journal of Forest Research, 134(6), 1109–1125.CrossRefGoogle Scholar
  43. Stojnić, S., Orlović, S., & Miljković, D. (2016). Intra-and interprovenance variations in leaf morphometric traits in European beech (Fagus sylvatica L.). Archives of Biological Sciences, 68, 64.CrossRefGoogle Scholar
  44. Sultan, S. E. (2000). Phenotypic plasticity for plant development, function and life history. Trends in Plant Science, 5(12), 537–542.CrossRefGoogle Scholar
  45. Sultan, S. E. (2001). Phenotypic plasticity for fitness components in Polygonum species of contrasting ecological breadth. Ecology, 82(2), 328–343.CrossRefGoogle Scholar
  46. Valladares, F., Wright, S. J., Lasso, E., Kitajima, K., & Pearcy, R. W. (2000). Plastic phenotypic response to light of 16 congeneric shrubs from a Panamanian rainforest. Ecology, 81(7), 1925–1936.CrossRefGoogle Scholar
  47. Valladares, F., Chico, J., Aranda, I., Balaguer, L., Dizengremel, P., Manrique, E., & Dreyer, E. (2002). The greater seedling high-light tolerance of Quercus robur over Fagus sylvatica is linked to a greater physiological plasticity. Trees, 16(6), 395–403.Google Scholar
  48. Valladares, F., Sanchez-Gomez, D., & Zavala, M. A. (2006). Quantitative estimation of phenotypic plasticity: Bridging the gap between the evolutionary concept and its ecological applications. Journal of Ecology, 94(6), 1103–1116.CrossRefGoogle Scholar
  49. Valladares, F., Gianoli, E., & Gómez, J. M. (2007). Ecological limits to plant phenotypic plasticity. New Phytologist, 176(4), 749–763.CrossRefGoogle Scholar
  50. Valluru, R., Link, J., & Claupein, W. (2012). Consequences of early chilling stress in two Triticum species: Plastic responses and adaptive significance. Plant Biology, 14(4), 641–651.CrossRefGoogle Scholar
  51. Vieira, W. D. L., Boeger, M. R. T., Cosmo, N. L., & Coan, A. I. (2014). Leaf morphological plasticity of tree species from two developmental stages in araucaria forest. Brazilian Archives of Biology and Technology, 57(4), 476–485.CrossRefGoogle Scholar
  52. von Wuehlisch, G. (2008). EUFORGEN technical guidelines for genetic conservation and use for European beech (Fagus sylvatica) (p. 6). Rome: Bioversity International.Google Scholar
  53. Żółkoś, K., & Meissner, W. (2009). A simple technique of random leaf collecting for biometric studies in a tree stand. Biodiversity: Research and Conservation, 15, 29–34.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Dijana Čortan
    • 1
    Email author
  • Marina Nonić
    • 2
  • Mirjana Šijačić-Nikolić
    • 2
  1. 1.Faculty of EducationUniversity of Novi SadNovi SadSerbia
  2. 2.Faculty of ForestryUniversity of BelgradeBelgradeSerbia

Personalised recommendations