Steroid Hormone and Nuclear Receptor Signaling Pathways

  • Sunil BadveEmail author


The steroid nuclear receptor family plays an important role in cancer. The receptors upon activation exert both genomic as well as non-genomic actions resulting in growth and survival signals. Multiple co-regulators (co-activators and co-repressors) modulate the action of these receptors making understanding the downstream effects difficult. Studies within the last decade have identified additional molecules, termed “pioneer factors,” which also play a critical role in determining the genomic actions. Several means are deployed to target these receptors in multiple cancers, particularly in breast and prostate cancer. However, resistance is common and exact mechanisms of resistance are poorly understood. Recent studies have suggested that mutations of these receptors may contribute to the resistance phenotype.


Estrogen Progesterone Androgen Glucocorticoids Retinoic acid receptors 


  1. 1.
    Evans RM, Mangelsdorf DJ. Nuclear receptors, RXR, and the big bang. Cell. 2014;157(1):255–66.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Zheng Y, Murphy LC. Regulation of steroid hormone receptors and coregulators during the cell cycle highlights potential novel function in addition to roles as transcription factors. Nucl Recept Signal. 2016;14:e001.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Wahli W, Martinez E. Superfamily of steroid nuclear receptors: positive and negative regulators of gene expression. FASEB J. 1991;5(9):2243–9.CrossRefPubMedGoogle Scholar
  4. 4.
    Contrò V, Basile JR, Proia P. Sex steroid hormone receptors, their ligands, and nuclear and non-nuclear pathways. AIMS Mol Sci. 2015;2(3):294–310.CrossRefGoogle Scholar
  5. 5.
    Levin ER, Hammes SR. Nuclear receptors outside the nucleus: extranuclear signalling by steroid receptors. Nat Rev Mol Cell Biol. 2016;17(12):783–97.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Gao X, Loggie BW, Nawaz Z. The roles of sex steroid receptor coregulators in cancer. Mol Cancer. 2002;1:7.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Nakshatri H, Badve S. FOXA1 as a therapeutic target for breast cancer. Expert Opin Ther Targets. 2007;11(4):507–14.CrossRefPubMedGoogle Scholar
  8. 8.
    Weigel NL, Moore NL. Kinases and protein phosphorylation as regulators of steroid hormone action. Nucl Recept Signal. 2007;5:e005.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Weigel NL, Moore NL. Steroid receptor phosphorylation: a key modulator of multiple receptor functions. Mol Endocrinol. 2007;21(10):2311–9.CrossRefPubMedGoogle Scholar
  10. 10.
    Barone I, Brusco L, Fuqua SA. Estrogen receptor mutations and changes in downstream gene expression and signaling. Clin Cancer Res. 2010;16(10):2702–8.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Renaud JP, Rochel N, Ruff M, Vivat V, Chambon P, Gronemeyer H, et al. Crystal structure of the RAR-gamma ligand-binding domain bound to all-trans retinoic acid. Nature. 1995;378(6558):681–9.CrossRefPubMedGoogle Scholar
  12. 12.
    Wagner RL, Apriletti JW, McGrath ME, West BL, Baxter JD, Fletterick RJ. A structural role for hormone in the thyroid hormone receptor. Nature. 1995;378(6558):690–7.CrossRefPubMedGoogle Scholar
  13. 13.
    Bourguet W, Ruff M, Chambon P, Gronemeyer H, Moras D. Crystal structure of the ligand-binding domain of the human nuclear receptor RXR-alpha. Nature. 1995;375(6530):377–82.CrossRefPubMedGoogle Scholar
  14. 14.
    Pearce ST, Liu H, Jordan VC. Modulation of estrogen receptor alpha function and stability by tamoxifen and a critical amino acid (Asp-538) in helix 12. J Biol Chem. 2003;278(9):7630–8.CrossRefPubMedGoogle Scholar
  15. 15.
    Nieto L, Tharun IM, Balk M, Wienk H, Boelens R, Ottmann C, et al. Estrogen receptor folding modulates cSrc kinase SH2 interaction via a helical binding mode. ACS Chem Biol. 2015;10(11):2624–32.CrossRefPubMedGoogle Scholar
  16. 16.
    Le Douarin B, Zechel C, Garnier JM, Lutz Y, Tora L, Pierrat P, et al. The N-terminal part of TIF1, a putative mediator of the ligand-dependent activation function (AF-2) of nuclear receptors, is fused to B-raf in the oncogenic protein T18. EMBO J. 1995;14(9):2020–33.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    vom Baur E, Zechel C, Heery D, Heine MJ, Garnier JM, Vivat V, et al. Differential ligand-dependent interactions between the AF-2 activating domain of nuclear receptors and the putative transcriptional intermediary factors mSUG1 and TIF1. EMBO J. 1996;15(1):110–24.CrossRefGoogle Scholar
  18. 18.
    L’Horset F, Dauvois S, Heery DM, Cavailles V, Parker MG. RIP-140 interacts with multiple nuclear receptors by means of two distinct sites. Mol Cell Biol. 1996;16(11):6029–36.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Klein-Hitpass L, Ryffel GU, Heitlinger E, Cato AC. A 13 bp palindrome is a functional estrogen responsive element and interacts specifically with estrogen receptor. Nucleic Acids Res. 1988;16(2):647–63.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Walker P, Germond JE, Brown-Luedi M, Givel F, Wahli W. Sequence homologies in the region preceding the transcription initiation site of the liver estrogen-responsive vitellogenin and apo-VLDLII genes. Nucleic Acids Res. 1984;12(22):8611–26.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Ma CX, Reinert T, Chmielewska I, Ellis MJ. Mechanisms of aromatase inhibitor resistance. Nat Rev Cancer. 2015;15(5):261–75.CrossRefPubMedGoogle Scholar
  22. 22.
    Jeselsohn R, De Angelis C, Brown M, Schiff R. The evolving role of the estrogen receptor mutations in endocrine therapy-resistant breast cancer. Curr Oncol Rep. 2017;19(5):35.CrossRefPubMedGoogle Scholar
  23. 23.
    Gu G, Fuqua SA. ESR1 mutations in breast cancer: proof-of-concept challenges clinical action. Clin Cancer Res. 2016;22(5):1034–6.CrossRefPubMedGoogle Scholar
  24. 24.
    Anbalagan M, Rowan BG. Estrogen receptor alpha phosphorylation and its functional impact in human breast cancer. Mol Cell Endocrinol. 2015;418(Pt 3):264–72.CrossRefPubMedGoogle Scholar
  25. 25.
    Jozwik KM, Carroll JS. Pioneer factors in hormone-dependent cancers. Nat Rev Cancer. 2012;12(6):381–5.CrossRefPubMedGoogle Scholar
  26. 26.
    Hurtado A, Holmes KA, Ross-Innes CS, Schmidt D, Carroll JS. FOXA1 is a key determinant of estrogen receptor function and endocrine response. Nat Genet. 2011;43(1):27–33.CrossRefPubMedGoogle Scholar
  27. 27.
    Maximov PY, McDaniel RE, Fernandes DJ, Korostyshevskiy VR, Bhatta P, Murdter TE, et al. Simulation with cells in vitro of tamoxifen treatment in premenopausal breast cancer patients with different CYP2D6 genotypes. Br J Pharmacol. 2014;171(24):5624–35.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Baum M, Budzar AU, Cuzick J, Forbes J, Houghton JH, Klijn JG, et al. Anastrozole alone or in combination with tamoxifen versus tamoxifen alone for adjuvant treatment of postmenopausal women with early breast cancer: first results of the ATAC randomised trial. Lancet. 2002;359(9324):2131–9.CrossRefPubMedGoogle Scholar
  29. 29.
    Pagani O, Regan MM, Francis PA. Are SOFT and TEXT results practice changing and how? Breast. 2016;27:122–5.CrossRefPubMedGoogle Scholar
  30. 30.
    Baselga J, Campone M, Piccart M, Burris HA 3rd, Rugo HS, Sahmoud T, et al. Everolimus in postmenopausal hormone-receptor-positive advanced breast cancer. N Engl J Med. 2012;366(6):520–9.CrossRefPubMedGoogle Scholar
  31. 31.
    Kuiper GG, Enmark E, Pelto-Huikko M, Nilsson S, Gustafsson JA. Cloning of a novel receptor expressed in rat prostate and ovary. Proc Natl Acad Sci U S A. 1996;93(12):5925–30.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Heldring N, Pike A, Andersson S, Matthews J, Cheng G, Hartman J, et al. Estrogen receptors: how do they signal and what are their targets. Physiol Rev. 2007;87(3):905–31.CrossRefPubMedGoogle Scholar
  33. 33.
    Huang B, Omoto Y, Iwase H, Yamashita H, Toyama T, Coombes RC, et al. Differential expression of estrogen receptor alpha, beta1, and beta2 in lobular and ductal breast cancer. Proc Natl Acad Sci U S A. 2014;111(5):1933–8.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Muthusamy S, Andersson S, Kim HJ, Butler R, Waage L, Bergerheim U, et al. Estrogen receptor beta and 17beta-hydroxysteroid dehydrogenase type 6, a growth regulatory pathway that is lost in prostate cancer. Proc Natl Acad Sci U S A. 2011;108(50):20090–4.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Warner M, Huang B, Gustafsson JA. Estrogen receptor beta as a pharmaceutical target. Trends Pharmacol Sci. 2017;38(1):92–9.CrossRefPubMedGoogle Scholar
  36. 36.
    Mani SK, Oyola MG. Progesterone signaling mechanisms in brain and behavior. Front Endocrinol (Lausanne). 2012;3:7.CrossRefGoogle Scholar
  37. 37.
    Chabbert-Buffet N, Meduri G, Bouchard P, Spitz IM. Selective progesterone receptor modulators and progesterone antagonists: mechanisms of action and clinical applications. Hum Reprod Updat. 2005;11(3):293–307.CrossRefGoogle Scholar
  38. 38.
    To SQ, Kwan EM, Fettke HC, Mant A, Docanto MM, Martelotto L, et al. Expression of androgen receptor splice variant 7 or 9 in whole blood does not predict response to androgen-axis-targeting agents in metastatic castration-resistant prostate cancer. Eur Urol. 2018. Feb 2. pii: S0302-2838(18)30016-2; [Epub ahead of print]CrossRefPubMedGoogle Scholar
  39. 39.
    Antonarakis ES, Lu C, Wang H, Luber B, Nakazawa M, Roeser JC, et al. AR-V7 and resistance to enzalutamide and abiraterone in prostate cancer. N Engl J Med. 2014;371(11):1028–38.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Desmet SJ, De Bosscher K. Glucocorticoid receptors: finding the middle ground. J Clin Invest. 2017;127(4):1136–45.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Pufall MA. Glucocorticoids and Cancer. Adv Exp Med Biol. 2015;872:315–33.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Inaba H, Pui CH. Glucocorticoid use in acute lymphoblastic leukaemia. Lancet Oncol. 2010;11(11):1096–106.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Uray IP, Dmitrovsky E, Brown PH. Retinoids and rexinoids in cancer prevention: from laboratory to clinic. Semin Oncol. 2016;43(1):49–64.CrossRefPubMedGoogle Scholar
  44. 44.
    Bhagwat AS, Vakoc CR. Targeting transcription factors in cancer. Trends Cancer. 2015;1(1):53–65.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Tata JT. Signalling through nuclear receptors. Nat Rev Mol Cell Biol. 2002;3:702–10.CrossRefPubMedGoogle Scholar
  46. 46.
    Haga CR, Daniel AR, Dressing GE, et al. Role of phosphorylation in progesterone receptor signaling and specificity. Mol Cell Endocrinol. 2012;357:43–9.CrossRefGoogle Scholar
  47. 47.
    Lu J, Van der Steen T, Tindall DJ. Are androgen receptor variants a substitute for the full-length receptor? Nat Rev Urol. 2015;12(3):137–44.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Pathology and Lab MedicineIndiana University School of MedicineIndianapolisUSA

Personalised recommendations