Real Time Measurement, Monitoring, and Control of CuIn1−xGaxSe2 by Spectroscopic Ellipsometry

  • Puja Pradhan
  • Abdel-Rahman A. Ibdah
  • Puruswottam Aryal
  • Dinesh Attygalle
  • Nikolas J. PodrazaEmail author
  • Sylvain Marsillac
  • Robert W. Collins
Part of the Springer Series in Optical Sciences book series (SSOS, volume 214)


Spectroscopic ellipsometry (SE) using a rotating compensator multichannel instrument has been applied in real time for characterization of the three stages of the coevaporation process for copper indium-gallium diselenide (CuIn1−xGaxSe2; CIGS) thin films. This absorber material and the coevaporation process yield the highest small area efficiency among inorganic polycrystalline thin film solar cells. In the first deposition stage of the process, indium-gallium selenide (In1−xGax)2Se3 (IGS) thin film deposition is performed via coevaporation of In, Ga, and Se on a substrate consisting of Mo-coated soda lime glass held at a temperature of 400 °C. In this stage, Mo/IGS interface roughness filling can be characterized along with the subsequent evolution of the IGS bulk and surface roughness layer thicknesses. An accurate rate for the effective thickness (or volume/area) can be determined from these results, and alloy compositional analysis of the IGS has been demonstrated at the first stage endpoint. In the second deposition stage, the IGS film is converted to CIGS via coevaporation of Cu and Se fluxes at an increased substrate temperature of 570 °C. A bulk conversion model provides the best fit to the real time SE data, and this model is employed in the analysis of the second-stage data. The results include the evolution of the content of CIGS within the film, along with the thicknesses of the bulk and surface roughness layers. The formation of a copper selenide (Cu2−xSe) component phase on the CIGS surface is detected just before the completion of the second stage. Subsequently, the evolution of the near-surface Cu2−xSe content is followed in terms of its effective thickness, spanning the time interval from the end of the second stage through much of the third stage. In the third stage of the deposition process, In, Ga, and Se coevaporation serves to convert the Cu-rich CIGS/Cu2−xSe to slightly Cu-poor CIGS. In this stage, the thickness evolution can be obtained along with bulk and surface roughness layer thicknesses at the overall deposition endpoint. In the three stages, the deduced deposition rates and final thicknesses provide information on the total metallic elemental fluxes, and the roughness evolution provides information on crystalline grain growth and near-surface crystallite coalescence in the polycrystalline films. Variations in the information deduced from real time SE can lead to insights into run-to-run irreproducibility that influences the performance of the resulting solar cells. The application of these capabilities is demonstrated for the fabrication of thin film solar cells in continuous and discontinuous (shuttered) processes for standard thickness (~2.5 μm) CIGS absorber layers as well as a shuttered process deemed necessary for adequate control of the deposition of thin (~0.3 μm) absorbers.


  1. 1.
    W.N. Shafarman, S. Siebentritt, L. Stolt, in Handbook of Photovoltaic Science and Engineering, 2nd edn., ed. by A. Luque, S. Hegedus (Wiley, New York, NY, 2011), Chapter 13, pp. 546–599Google Scholar
  2. 2.
    P. Jackson, R. Wuerz, D. Hariskos, E. Lotter, W. Witte, M. Powalla, Phys. Stat. Solidi RRL 10, 583 (2016)CrossRefGoogle Scholar
  3. 3.
    P. Jackson, D. Hariskos, R. Wuerz, W. Wischmann, M. Powalla, Phys. Stat. Solidi RRL 9, 28 (2015)CrossRefGoogle Scholar
  4. 4.
    A. Chirilă, P. Reinhard, F. Pianezzi, P. Bloesch, A.R. Uhl, C. Fella, L. Kranz, D. Keller, C. Gretener, H. Hagendorfer, D. Jaeger, R. Erni, S. Nishiwaki, S. Buecheler, A.N. Tiwari, Nat. Mater. 12, 1107 (2013)ADSCrossRefGoogle Scholar
  5. 5.
    D. Attygalle, V. Ranjan, P. Aryal, P. Pradhan, S. Marsillac, N.J. Podraza, R.W. Collins, IEEE J. Photovolt. 3, 375 (2012)CrossRefGoogle Scholar
  6. 6.
    P. Pradhan, D. Attygalle, P. Aryal, N.J. Podraza, A.S. Ferlauto, S. Marsillac, R.W. Collins, in Proceedings of the 39th IEEE Photovoltaic Specialists Conference, Tampa, FL, 16–21 June 2013 (IEEE, New York, NY, 2013), pp. 414–419Google Scholar
  7. 7.
    P. Pradhan, P. Aryal, A.-R. Ibdah, K. Aryal, J. Li, N.J. Podraza, S. Marsillac, R.W. Collins, in Proceedings of the 40th IEEE Photovoltaic Specialists Conference, Denver, CO, 8–13 June 2014 (IEEE, New York, NY, 2014), pp. 2060–2065Google Scholar
  8. 8.
    P. Pradhan, Real Time Spectroscopic Ellipsometry Analysis of the Three Stages of Cu(In1−xGax)Se2 Co-evaporation. Ph.D. Dissertation, (University of Toledo, Toledo, OH, 2017)Google Scholar
  9. 9.
    J. Abu-Shama, R. Noufi, Y. Yan, K. Jones, B. Keyes, P. Dippo, M. Romero, M. Al-Jassim, J. Alleman, D.L. Williamson, in II–VI Compound Semiconductor Photovoltaic Materials, Materials Research Society Symposium Proceedings, vol. 668, ed. by R. Birkmire, R. Noufi, D. Lincot, H.-W. Schock (MRS, Warrendale, PA, 2001), Symposium H; H.7.2, pp. 1–6Google Scholar
  10. 10.
    A.M. Gabor, J.R. Tuttle, M.H. Bode, A. Franz, A.L. Tennant, M.A. Contreras, R. Noufi, D.G. Jensen, A.M. Hermann, Sol. Energy Mater. Sol. Cells 41–42, 247 (1996)CrossRefGoogle Scholar
  11. 11.
    S. Marsillac, R.W. Collins, in Physics, Simulation, and Photonic Engineering of Photovoltaic Devices, San Francisco, CA, 23–26 January 2012, Conference Proceedings of SPIE, vol. 8256, ed. by A. Freundlich, J.-F.F. Guillemoles (SPIE, Bellingham, WA, 2012), Art. No. 825613, pp. 1–11Google Scholar
  12. 12.
    J. Li, R.W. Collins, M.N. Sestak, P. Koirala, N.J. Podraza, S. Marsillac, A.A. Rockett, in Advanced Characterization Techniques for Thin Film Solar Cells, 2nd edn., ed. by D. Abou-Ras, T. Kirchartz, U. Rau (Wiley-VCH, Weinheim, Germany, 2016), Chapter 9, pp. 215–256Google Scholar
  13. 13.
    J.D. Walker, H. Khatri, V. Ranjan, S. Little, R. Zartman, R.W. Collins, S. Marsillac, in Proceedings of the 34th IEEE Photovoltaic Specialists Conference, Philadelphia, PA, 7–12 June 2009 (IEEE, New York, NY, 2009), pp. 1154–1156Google Scholar
  14. 14.
    S. Marsillac, V. Ranjan, S. Little, R.W. Collins, in Proceedings of the 35th IEEE Photovoltaic Specialists Conference, Honolulu, HI, 20–25 June 2010 (IEEE, New York, NY, 2010), pp. 866–868Google Scholar
  15. 15.
    P. Aryal, A.-R. Ibdah, P. Pradhan, D. Attygalle, P. Koirala, N.J. Podraza, S. Marsillac, R.W. Collins, J. Li, Prog. Photovolt.: Res. Appl. 24, 1200 (2016)Google Scholar
  16. 16.
    Y. Cong, I. An, K. Vedam, R.W. Collins, Appl. Opt. 21, 2692 (1991)ADSCrossRefGoogle Scholar
  17. 17.
    I. An, Y.M. Li, H.V. Nguyen, C.R. Wronski, R.W. Collins, Appl. Phys. Lett. 59, 2543 (1991)ADSCrossRefGoogle Scholar
  18. 18.
    B. Johs, J.S. Hale, Phys. Stat. Solidi (a) 205, 715 (2008)Google Scholar
  19. 19.
    H. Fujiwara, J. Koh, P.I. Rovira, R.W. Collins, Phys. Rev. B 61, 10832 (2000)ADSCrossRefGoogle Scholar
  20. 20.
    J. Li, J. Chen, J.A. Zapien, N.J. Podraza, C. Chen, J. Drayton, A. Vasko, A. Gupta, S.L. Wang, R.W. Collins, A.D. Compaan, in Thin-film Compound Semiconductor Photovoltaics, Materials Research Society Symposium Proceedings, vol. 865, ed. by W. Shafarman, T. Gessert, S. Niki, S. Siebentritt (MRS, Warrendale, PA, 2005), Symposium F; F1.2.1, pp. 9–14Google Scholar
  21. 21.
    J. Li, J. Chen, M.N. Sestak, R.W. Collins, IEEE J. Photovolt. 1, 187 (2011)CrossRefGoogle Scholar
  22. 22.
    T. Begou, J.D. Walker, D. Attygalle, V. Ranjan, R.W. Collins, S. Marsillac, Phys. Stat. Solidi RRL 5, 217 (2011)CrossRefGoogle Scholar
  23. 23.
    J.D. Walker, H. Khatri, V. Ranjan, J. Li, R.W. Collins, S. Marsillac, Appl. Phys. Lett. 94, 141908 (2009)ADSCrossRefGoogle Scholar
  24. 24.
    J. Koh, A.S. Ferlauto, P.I. Rovira, R.J. Koval, C.R. Wronski, R.W. Collins, Appl. Phys. Lett. 75, 2286 (1999)ADSCrossRefGoogle Scholar
  25. 25.
    J.D. Walker, H. Khatri, S. Little, V. Ranjan, R. Collins, S. Marsillac, in Photovoltaic Materials and Manufacturing Issues II, Materials Research Society Symposium Proceedings, vol. 1210, ed. by B. Sopori, J. Yang, T. Surek, B. Dimmler (MRS, Warrendale, PA, 2009), Symposium Q; Q06-02, pp. 159–164Google Scholar
  26. 26.
    D.I. Chakrabarti, D.E. Laughlin, Bull. Alloy Phase Diagr. 2, 305 (1981)CrossRefGoogle Scholar
  27. 27.
    V.M. Glazov, A.S. Pashinkin, V.A. Fedorov, Inorg. Mater. 36, 641 (2000)CrossRefGoogle Scholar
  28. 28.
    P. Aryal, Optical and Photovoltaic Properties of Copper Indium-gallium Diselenide Materials and Solar Cells. Ph.D. Dissertation, (University of Toledo, Toledo, OH, 2014)Google Scholar
  29. 29.
    S. Marsillac, V. Ranjan, K. Aryal, S. Little, Y. Erkaya, G. Rajan, P. Boland, D. Attygalle, P. Aryal, P. Pradhan, R.W. Collins, in Proceedings of the 38th IEEE Photovoltaic Specialists Conference, Austin, TX, 3–8 June 2012 (IEEE, New York NY, 2012), pp. 1492–1494Google Scholar
  30. 30.
    J. Li, M. Contreras, J. Scharf, M. Young, T.E. Furtak, R. Noufi, D. Levi, in Proceedings of the 39th IEEE Photovoltaic Specialists Conference, Tampa, FL, 16–21 June 2013 (IEEE, New York, NY, 2013), pp. 2609–2611Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Puja Pradhan
    • 1
  • Abdel-Rahman A. Ibdah
    • 1
  • Puruswottam Aryal
    • 1
  • Dinesh Attygalle
    • 1
  • Nikolas J. Podraza
    • 1
    Email author
  • Sylvain Marsillac
    • 2
  • Robert W. Collins
    • 1
  1. 1.Department of Physics & Astronomy and Center for Photovoltaics Innovation & CommercializationUniversity of ToledoToledoUSA
  2. 2.Virginia Institute of Photovoltaics, Old Dominion UniversityNorfolkUSA

Personalised recommendations