Advertisement

On-line Monitoring of Photovoltaics Production

  • Ambalanath Shan
  • Jie Chen
  • Prakash Koirala
  • Kenneth R. Kormanyos
  • Nikolas J. PodrazaEmail author
  • Robert W. Collins
Chapter
Part of the Springer Series in Optical Sciences book series (SSOS, volume 214)

Abstract

Two approaches are reviewed for the application of spectroscopic ellipsometry (SE) to on-line monitoring of thin film photovoltaics (PV) production. In the first approach, through-the-glass SE is applied for serial point-by-point measurements spanning the area of a thin film PV panel 60 cm × 120 cm in size. An ellipsometer detection system is used that incorporates two one-dimensional detector arrays for spectroscopy over a wide photon energy range (0.75–3.5 eV, limited by glass absorption at high energies). The PV panel in this review is fabricated starting from soda-lime glass with four oxide layers deposited on its surface, including the transparent top contact. A CdS/CdTe semiconductor bilayer is deposited subsequently on the top contact, functioning as the PV heterojunction. In the on-line analysis configuration, the coated glass panel moves along a roller conveyer with the film side facing up and passes a station designed for on-line mapping by SE. The polarization generation and detection arms of the ellipsometer located beneath the panel scan from side to side and acquire SE data in a through-the-glass measurement mode. In this approach, a maximum of ~30 locations can be measured in the one minute time period required for the 120 cm long panel to travel by the SE station; the largest fraction of the time is consumed by ellipsometer translation. The effective thickness of CdS (or CdS material volume/area), which includes bulk and interface layer components, is deduced in SE data analysis. This thickness is found to be a robust parameter that can be used in modeling to predict photo-generated charge carrier collection for the CdTe PV modules. The second approach for on-line monitoring reviewed here employs an instrument with an expanded beam for line imaging across a PV substrate/film-stack structure with a maximum image width of 15 cm. In this approach, a detection system is used incorporating a two-dimensional detector array; the two array indices are exploited for spectroscopy (1.3–3.3 eV) and line imaging in parallel. Thus, imaging width-wise and mapping length-wise is performed without ellipsometer translation, enabling high speed multilayer uniformity evaluations in flexible roll-to-roll PV production. The application reviewed here involves film-side analysis of multilayer fabrication on a moving length of 12.7 cm wide flexible polyimide foil substrate mounted within a cassette for roll-to-roll deposition. Maps are acquired in situ after deposition of individual Ag and ZnO layers, functioning together as the back reflector and back contact, as well as after deposition of n-type doped hydrogenated amorphous silicon (a-Si:H n-layer) as a component of a thin film a-Si:H n-i-p solar cell structure. Areas of the flexible coated PV panels up to 12 cm × 45 cm in size were characterized to determine layer thicknesses and optical properties. Parametric expressions incorporating Drude, critical point oscillator, and modified Lorentz oscillator terms were employed to describe the complex dielectric functions of thin film Ag and ZnO, and the a-Si:H n-layer, respectively. Currently, ~30 point line images can be collected every 20 cm of length when using an average 120 cm/min substrate speed. Prospects exist for increasing length-wise resolution significantly to ~0.5 cm, using high speed detection schemes demonstrated previously.

Notes

Acknowledgements

The authors acknowledge the contributions of Blaine D. Johs, Jeffrey S. Hale, and Galen L. Pfeiffer of J. A. Woollam Company for development of the on-line SE instrumentation for CdTe photovoltaics reviewed here. The authors also acknowledge the contributions of Miklos Fried, Gyorgy Juhász, Csaba Major, Olivér Polgár, Ágoston Németh, and Peter Petrik of the Research Institute for Technical Physics and Materials Science, Budapest, Hungary, for the development of the expanded beam SE instrumentation used in roll-to-roll photovoltaics reviewed here.

References

  1. 1.
    T. Ellison, D. Dodge, J. Karn, R. Kopf, R. Liu, M. Lycette, W. Messing, in Proceedings of the 2006 IEEE 4th World Conference on Photovoltaic Energy Conversion, Waikoloa, HI, May 7–12, 2006 (IEEE, New York, NY, 2006), pp. 1736–1739Google Scholar
  2. 2.
    M.A. Green, K. Emery, Y. Hishikawa, W. Warta, E.D. Dunlop, D.H. Levi, A.W.Y. Ho-Baillie, Prog. Photovolt.: Res. Appl. 25, 3 (2017)Google Scholar
  3. 3.
    I.P. Herman, Optical Diagnostics for Thin Film Processing (Academic, New York, NY, 1996)Google Scholar
  4. 4.
    A. Luque, S. Hegedus (eds.), Handbook of Photovoltaic Science and Engineering, 2nd edn. (Wiley, New York, NY, 2011)Google Scholar
  5. 5.
    F. Wooten, Optical Properties of Solids (Academic, New York, NY, 1972)Google Scholar
  6. 6.
    R.W. Collins, A.S. Ferlauto, in Handbook of Ellipsometry, ed. by H.G. Tompkins, E.A. Irene (William Andrew, Norwich, NY, 2005), Chapter 2, pp. 93–235Google Scholar
  7. 7.
    D. Abou-Ras, T. Kirchartz, U. Rau (eds.), Advanced Characterization Techniques for Thin Film Solar Cells, 2nd edn. (Wiley-VCH, Weinheim, Germany, 2016)Google Scholar
  8. 8.
    Z. Huang, J. Chen, M.N. Sestak, D. Attygalle, L.R. Dahal, M.R. Mapes, D.A. Strickler, K.R. Kormanyos, C. Salupo, R.W. Collins, in Proceedings of the 35th IEEE Photovoltaic Specialists Conference, Honolulu, HI, June 20–25, 2010 (IEEE, New York, NY, 2010), pp. 1678–1683Google Scholar
  9. 9.
    J. Chen, P. Koirala, C. Salupo, R.W. Collins, S. Marsillac, K.R. Kormanyos, B.D. Johs, J.S. Hale, G.L. Pfeiffer, in Proceedings of the 38th IEEE Photovoltaic Specialists Conference, Austin, TX, June 3–8, 2012 (IEEE, New York, NY, 2012), pp. 377–381Google Scholar
  10. 10.
    R.W. Collins, I. An, J. Lee, J.A. Zapien, in Handbook of Ellipsometry, ed. by H.G. Tompkins, E.A. Irene (William Andrew, Norwich, NY, 2005), Chapter 7, pp. 481–566Google Scholar
  11. 11.
    G.E. Jellison, Jr., in Handbook of Ellipsometry, ed. by H.G. Tompkins, E.A. Irene (William Andrew, Norwich, NY, 2005), Chapter 3, pp. 237–296Google Scholar
  12. 12.
    P. Aryal, J. Chen, Z. Huang, L.R. Dahal, M.N. Sestak, D. Attygalle, R. Jacobs, V. Ranjan, S. Marsillac, R.W. Collins, in Proceedings of the 37th IEEE Photovoltaic Specialists Conference, Seattle, WA, June 19–24, 2011 (IEEE, New York, NY, 2011), pp. 2241–2246Google Scholar
  13. 13.
    I. An, Y.M. Li, H.V. Nguyen, R.W. Collins, Rev. Sci. Instrum. 63, 3842 (1992)ADSCrossRefGoogle Scholar
  14. 14.
    A. Shan, M. Fried, G. Juhász, C. Major, O. Polgár, A. Németh, P. Petrik, L.R. Dahal, J. Chen, Z. Huang, N.J. Podraza, R.W. Collins, IEEE J. Photovolt. 4, 355 (2014)CrossRefGoogle Scholar
  15. 15.
    C. Major, G. Juhász, Z. Horváth, O. Polgár, M. Fried, Phys. Stat. Solidi (c) 5, 1077 (2008)CrossRefGoogle Scholar
  16. 16.
    G. Juhász, Z. Horváth, C. Major, P. Petrik, O. Polgár, M. Fried, Phys. Stat. Solidi (c) 5, 1081 (2008)CrossRefGoogle Scholar
  17. 17.
    C. Major, G. Juhász, P. Petrik, Z. Horváth, O. Polgár, M. Fried, Vacuum 84, 119 (2009)ADSCrossRefGoogle Scholar
  18. 18.
    M. Fried, G. Juhász, C. Major, P. Petrik, O. Polgár, Z. Horváth, A. Nutsch, Thin Solid Films 519, 2730 (2011)ADSCrossRefGoogle Scholar
  19. 19.
    B.D. Johs, J. Hale, N.J. Ianno, C.M. Herzinger, T. Tiwald, J.A. Woollam, in Optical Metrology Roadmap for the Semiconductor, Optical, and Data Storage Industries II, Conference Proceedings of SPIE, vol. 4449, ed. by A. Duparre, B. Singh (SPIE, Bellingham, WA, 2001), pp. 41–57Google Scholar
  20. 20.
    J. Chen, J. Li, C. Thornberry, M.N. Sestak, R.W. Collins, J.D. Walker, S. Marsillac, A.R. Aquino, A. Rockett, in Proceedings of the 34th IEEE Photovoltaic Specialists Conference, Philadelphia, PA, June 7–12, 2009 (IEEE, New York, NY, 2009), pp. 1748–1753Google Scholar
  21. 21.
    R.A. Synowicki, B.D. Johs, A.C. Martin, Thin Solid Films 519, 2907 (2011)ADSCrossRefGoogle Scholar
  22. 22.
    K. von Rottkay, M. Rubin, in Thin Films for Photovoltaic and Related Device Applications, Materials Research Society Symposium Proceedings, vol. 426, ed. by A. Catalano, C. Eberspacher, D.S. Ginley, T.M. Peterson, H.W. Schock, T. Wada (MRS, Warrendale, PA, 1996), pp. 449–454Google Scholar
  23. 23.
    J. Chen, J. Li, D. Sainju, K.D. Wells, N.J. Podraza, R.W. Collins, in Proceedings of the 2006 IEEE 4th World Conference on Photovoltaic Energy Conversion, Waikoloa, HI, May 7–12, 2006 (IEEE, New York, NY, 2006), pp. 475–478Google Scholar
  24. 24.
    P. Koirala, J. Li, H.P. Yoon, P. Aryal, S. Marsillac, A.A. Rockett, N.J. Podraza, R.W. Collins, Prog. Photovolt.: Res. Appl. 24, 1055 (2016)CrossRefGoogle Scholar
  25. 25.
    F. Becker, H.-J. Frenck, in Photovoltaics International, 12th edn. (2011), p. 134Google Scholar
  26. 26.
    J. Li, J. Chen, M.N. Sestak, R.W. Collins, IEEE J. Photovolt. 1, 187 (2011)Google Scholar
  27. 27.
    B.E. McCandless, J.R. Sites, in Handbook of Photovoltaic Science and Engineering, 2nd edn., ed. by A. Luque, S. Hegedus (Wiley, New York, NY, 2011), Chapter 14, pp. 600–641Google Scholar
  28. 28.
    L.R. Dahal, J. Li, J.A. Stoke, Z. Huang, A. Shan, A.S. Ferlauto, C.R. Wronski, R.W. Collins, N.J. Podraza, Sol. Energy Mater. Sol. Cells 129, 32 (2014)CrossRefGoogle Scholar
  29. 29.
    M. Fried, G. Juhász, C. Major, A. Németh, P. Petrik, O. Polgár, C. Salupo, L.R. Dahal, R.W. Collins, in Advanced Materials Processing for Scalable Solar-Cell Manufacturing, Materials Research Society Symposium Proceedings, vol. 1323, ed. by L. Tsakalakos, H. Ji, B. Ren (MRS, Warrenville, PA, 2011), C03-12: pp. 157–162Google Scholar
  30. 30.
    J.A. Zapien, R.W. Collins, R. Messier, Rev. Sci. Instrum. 71, 3451 (2000)ADSCrossRefGoogle Scholar
  31. 31.
    R.W. Collins, I. An, C. Chen, in Handbook of Ellipsometry, ed. by H.G. Tompkins, E.A. Irene (William Andrew, Norwich, NY, 2005), Chapter 5, pp. 329–432Google Scholar
  32. 32.
    E.A. Schiff, S. Hegedus, X. Deng, in Handbook of Photovoltaic Science and Engineering, 2nd edn., ed. by A. Luque, S. Hegedus (Wiley, New York, NY, 2011), Chapter 12, pp. 487–545Google Scholar
  33. 33.
    J. Lee, P.I. Rovira, I. An, R.W. Collins, Appl. Phys. Lett. 72, 900 (1998)ADSCrossRefGoogle Scholar
  34. 34.
    H. Fujiwara, J. Koh, P.I. Rovira, R.W. Collins, Phys. Rev. B 61, 10832 (2000)ADSCrossRefGoogle Scholar
  35. 35.
    S.O. Kasap, Principles of Electronic Materials and Devices, 3rd edn. (McGraw-Hill, New York, NY, 2006), p. 129Google Scholar
  36. 36.
    L.R. Dahal, D. Sainju, N.J. Podraza, S. Marsillac, R.W. Collins, Thin Solid Films 519, 2682 (2011)ADSCrossRefGoogle Scholar
  37. 37.
    A. Janotti, C.G. Van de Walle, Rep. Prog. Phys. 72, 126501 (2009)ADSCrossRefGoogle Scholar
  38. 38.
    P. Aryal, A.-R. Ibdah, P. Pradhan, D. Attygalle, P. Koirala, N.J. Podraza, S. Marsillac, R.W. Collins, J. Li, Prog. Photovolt.: Res. Appl. 24, 1200 (2016)CrossRefGoogle Scholar
  39. 39.
    A.S. Ferlauto, G.M. Ferreira, J.M. Pearce, C.R. Wronski, R.W. Collins, X. Deng, G. Ganguly, J. Appl. Phys. 92, 2424 (2002)ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Ambalanath Shan
    • 1
  • Jie Chen
    • 1
  • Prakash Koirala
    • 1
  • Kenneth R. Kormanyos
    • 2
  • Nikolas J. Podraza
    • 1
    Email author
  • Robert W. Collins
    • 1
  1. 1.Department of Physics & Astronomy and Center for Photovoltaics Innovation & CommercializationUniversity of ToledoToledoUSA
  2. 2.Calyxo USAPerrysburgUSA

Personalised recommendations