Advertisement

Invasive and Noninvasive Hemodynamic Monitoring

  • Stefano Orsenigo
  • Marco Pulici
Chapter

Abstract

The focus of this chapter is the added value of an optimized hemodynamic monitoring system.

Hemodynamic indexes can give valuable information about patient tissue perfusion and therefore guide medical therapy, improving outcome.

Over the years many techniques have been developed in order to optimize hemodynamic status, but currently none have proven to be even close to the ideal one.

The perfect hemodynamic index is the one that provides a cheap, continuous, noninvasive, and yet accurate measurement of tissue perfusion.

The optimal monitoring system should be tailored on patient clinical status, balancing efficacy and invasiveness.

Furthermore, many efforts have been made to better understand patient volemic status and fluid responsiveness, which are important determinants of cardiac output and tissue perfusion.

Many studies have proven that in different settings, establishing patient cardiac output still remains a challenge.

The following pages will revise the state of the art.

References

  1. 1.
    Webb AR, Shapiro MJ, Singer M, Suter P. Oxford textbook of critical care. Oxford: Oxford University Press; 1999. p. 907.Google Scholar
  2. 2.
    Marik PE, Monnet X, Teboul JL. Hemodynamic parameters to guide fluid therapy. Ann Intensive Care. 2011;1:1.CrossRefGoogle Scholar
  3. 3.
    Bigatello LM, George E. Hemodynamic monitoring. Minerva Anestesiol. 2002;68:219–25.PubMedGoogle Scholar
  4. 4.
    Longnecker DE, Brown DL, Newman MF, Zapol WM. Anesthesiology. 2012:1280–9.Google Scholar
  5. 5.
    Varon J, Marik PE. Perioperative hypertension management. Vasc Health Risk Manag. 2008;4(3):615–27.CrossRefGoogle Scholar
  6. 6.
    McLellan SA, Walsh TS. Oxygen delivery and haemoglobin. Contin Educ Anaesth Crit Care Pain. 2004;4:123–6.CrossRefGoogle Scholar
  7. 7.
    Longnecker DE, Brown DL, Newman MF, Zapol WM. Anesthesiology. 2012;418Google Scholar
  8. 8.
    Vincent JL. Understanding cardiac output. Crit Care. 2008;12(4):174.CrossRefGoogle Scholar
  9. 9.
    Marx G, Schindler AW, Mosch C, Albers J, Bauer M, Gnass I, Hobohm C, Janssens U, Kluge S, Kranke P, Maurer T, Merz W, Neugebauer E, Quintel M, Senninger N, Trampisch HJ, Waydhas C, Wildenauer R, Zacharowski K, Eikermann M. Intravascular volume therapy in adults: guidelines from the Association of the Scientific Medical Societies in Germany. Eur J Anesthesiol. 2016;33(7):488–521.CrossRefGoogle Scholar
  10. 10.
    Saugel B, Kirsche SV, Hapfelmeier A, Phillip V, Schultheiss C, Schmid RM, Huber W. Prediction of fluid responsiveness in patients admitted to the medical intensive care unit. J Crit Care. 2013;28(4):537.e1–9.CrossRefGoogle Scholar
  11. 11.
    Ortega R, Hansen CJ, Elterman K, Woo A. Pulse oximetry. N Engl J Med. 2011;364:e33.CrossRefGoogle Scholar
  12. 12.
    Moore LJ, Wade CE, Vincent L, Podbielski J, Camp E, Junco DD, Radhakrishnan H, McCarthy J, Gill B, Holcomb JB. Evaluation of noninvasive hemoglobin measurements in trauma patients. Am J Surg. 2013;206(6):1041–7.CrossRefGoogle Scholar
  13. 13.
    Miller RD, Cohen NH, Eriksson LI, Fleisher LA, Wiener-Kronish JP, Young WL. Miller’s anesthesia. 8th ed. Philadelphia, PA: Saunders; 2015. p. 1362–48.Google Scholar
  14. 14.
    Pinsky MR. Functional hemodynamic monitoring. Crit Care Clin. 2015;31(1):89–111.CrossRefGoogle Scholar
  15. 15.
    Marik PE, Lemson J. Fluid responsiveness: an evolution of our understanding. Br J Anaesth. 2014;112(4):617–20.CrossRefGoogle Scholar
  16. 16.
    Marik PE, Cavallazzi R. Does the central venous pressure predict fluid responsiveness? An updated meta-analysis and a plea for some common sense. Crit Care Med. 2013;41(7):1774–81.CrossRefGoogle Scholar
  17. 17.
    Cherpanath TGV, Geerts BF, Lagrand WK, Schultz MJ, Groeneveld ABJ. Basic concepts of fluid responsiveness. Neth Heart J. 2013;21:530–6.CrossRefGoogle Scholar
  18. 18.
    Lobo SM, de Oliveira NE. Clinical review: what are the best hemodynamic targets for noncardiac surgical patients? Crit Care. 2013;17(2):210.CrossRefGoogle Scholar
  19. 19.
    Teboul JL, Saugel B, Cecconi M, De Backer D, Hofer CK, Monnet X, Perel A, Pinsky MR, Reuter DA, Rhodes A, Squara P, Vincent JL, Scheeren TM. Less invasive hemodynamic monitoring in critically ill patients. Intensive Care Med. 2016;42(9):1350–9.CrossRefGoogle Scholar
  20. 20.
    Feissel M, Michard F, Faller JP, Teboul JL. The respiratory variation in inferior vena cava diameter as a guide to fluid therapy. Intensive Care Med. 2004;30:1834–7.CrossRefGoogle Scholar
  21. 21.
    Reyer E. The hemodynamic and physiological relevance of continuous central venous oxygenation monitoring: it’s not just for sepsis. ICU Medical Inc; 2013. p. 1–8.Google Scholar
  22. 22.
    Mesquida J, Saludes P, Gruartmoner G, Espinal C, Torrents E, Baigorriand F, Artigas A. Central venous-to-arterial carbon dioxide difference combined with arterial-to-venous oxygen content difference is associated with lactate evolution in the hemodynamic resuscitation process in early septic shock. Crit Care. 2015;19:126.CrossRefGoogle Scholar
  23. 23.
    Mallat J, Lemyze M, Tronchon L, Vallet B, Thevenin D. Use of venous-to-arterial carbon dioxide tension difference to guide resuscitation therapy in septic shock. World J Crit Care Med. 2016;5(1):47–56.CrossRefGoogle Scholar
  24. 24.
    Tánczos K, Németh M, Molnár Z. The multimodal concept of hemodynamic stabilization. Front Public Health. 2014;2:34.CrossRefGoogle Scholar
  25. 25.
    Mallat J, Salaun P, Gasan G, Tronchon L, Thevenin D. Venoarterial carbon dioxide gradient at the early stage of septic shock. Crit Care. 2010;14(Suppl 1):P156.CrossRefGoogle Scholar
  26. 26.
    Vincent JL, Weil MH. Fluid challenge revisited. Crit Care Med. 2006:1333–7.CrossRefGoogle Scholar
  27. 27.
    Andersen LW, Mackenhauer J, Roberts JC, Berg KM, Cocchi MN, Donnino MW. Etiology and therapeutic approach to elevated lactate. Mayo Clin Proc. 2013;88(10):1127–40.CrossRefGoogle Scholar
  28. 28.
    Aya H, Rhodes A, Grounds RM, Cecconi M. Minimal volume for a fluid challenge in postoperative patients. Crit Care. 2015;19(Suppl 1):P189.CrossRefGoogle Scholar
  29. 29.
    Monnet X, Teboul JL. Passive leg raising: five rules, not a drop of fluid! Crit Care. 2015;19(1):18.CrossRefGoogle Scholar
  30. 30.
    Perren A, Markmann M, Merlani G, Marone C, Merlani P. Fluid balance in critically ill patients. Should we really rely on it? Minerva Anestesiol. 2011;77:802–11.PubMedGoogle Scholar
  31. 31.
    Sevransky J. Clinical assessment of hemodynamically unstable patients. Curr Opin Crit Care. 2009;15(3):234–8.CrossRefGoogle Scholar
  32. 32.
    Mythen MG. Does gastric tonometry-guided therapy reduce total mortality in critically ill patients? Crit Care. 2015;19:172.CrossRefGoogle Scholar
  33. 33.
    Zhang X, Zuan W, Yin P, Wang L, Wu X, Wu Q. Gastric tonometry guided therapy in critical care patients: a systematic review and meta-analysis. Crit Care. 2015;19:22.CrossRefGoogle Scholar
  34. 34.
    Cecconi M, Hofer C, Teboul JL, Pettila V, Wilkman E, Molnar Z, Della Rocca G, Aldecoa C, Artigas A, Jog S, Sander M, Spies C, Lefrant JY, De Backer D. Fluid challenges in intensive care: the FENICE study. Intensive Care Med. 2015;41:1529–37.CrossRefGoogle Scholar
  35. 35.
    Strunden MS, Heckel K, Goetz AE, Reuter DA. Perioperative fluid and volume management: physiological basis, tools and strategies. Ann Intensive Care. 2011;1:2.CrossRefGoogle Scholar
  36. 36.
    Cordemans C, De Laet I, Van Regenmortel N, Schoonheydt K, Dits H, Huber W, Malbrain MLNG. Fluid management in critically ill patients: the role of extravascular lung water, abdominal hypertension, capillary leak, and fluid balance. Ann Intensive Care. 2012;2(Suppl 1):S1.CrossRefGoogle Scholar
  37. 37.
    Myburgh JA, Mythen MG. Resuscitation fluids. N Engl J Med. 2013;369:1243–51.CrossRefGoogle Scholar
  38. 38.
    Abi B. Cochrane injuries group albumin reviewers Why albumin may not work. Br Med J. 1998;317:235.CrossRefGoogle Scholar
  39. 39.
    The SAFE Study Investigators. A comparison of albumin and saline for fluid resuscitation in the intensive care unit. N Engl J Med. 2004;350:2247–56.CrossRefGoogle Scholar
  40. 40.
    Caironi P, Tognoni G, Masson S, Fumagalli R, Pesenti A, Romero M, Fanizza C, Caspani L, Faenza S, Grasselli G, Iapichino G, Antonelli M, Parrini V, Fiore G, Latini R, Gattinoni L. Albumin replacement in patients with severe sepsis or septic shock. N Engl J Med. 2014;370(15):1412–21.CrossRefGoogle Scholar
  41. 41.
    Contreras M. ABC of transfusion. New York, NY: John Wiley & Sons; 2009.Google Scholar
  42. 42.
    Hébert PC, Carson JL. Transfusion threshold of 7g per deciliter—the new normal. N Engl J Med. 2014;371(15):1459–61.CrossRefGoogle Scholar
  43. 43.
    Bangash MN, Kong M, Pearse RM. Use of inotropes and vasopressor agents in critically ill patients. Br J Pharmacol. 2010;165(7):2015–33.CrossRefGoogle Scholar
  44. 44.
    Holmes CL, Walley KR. Bad medicine: low-dose dopamine in the ICU. Chest. 2003;123(4):1266–75.CrossRefGoogle Scholar
  45. 45.
    Brunton L, Parker K, Blumenthal D, Buxton I. Goodman & Gilman’s manual of pharmacology and therapeutics. New York: McGraw-Hill; 2008. p. 149–58.Google Scholar
  46. 46.
    Nieminen MS, Fruhwald S, Heunks LMA, Suominem PK, Gordon AC, Kivikko M, Pollesello P. Levosimendan: current data, clinical use and future development. Heart Lung Vessel. 2013;5(4):227–45.PubMedPubMedCentralGoogle Scholar
  47. 47.
    Landoni G, Lomivorotov VV, Alvaro G, Lobreglio R, Pisano A, Guarracino F, Calabrò MG, Grigoryev EV, Likhvantsev VV, Salgado-Filho MF, Bianchi A, Pasyuga VV, Baiocchi M, Pappalardo F, Monaco F, Boboshko VA, Abubakirov MN, Amantea B, Lembo R, Brazzi L, Verniero L, Bertini P, Scandroglio AM, Bove T, Belletti A, Michienzi MG, Shukevich DL, Zabelina TS, Bellomo R, Zangrillo A. Levosimendan for hemodynamic support after cardiac surgery. N Engl J Med. 2017;376:2021–31.CrossRefGoogle Scholar
  48. 48.
    Brunton L, Parker K, Blumenthal D, Buxton I. The Goodman & Gilman’s manual of pharmacology and therapeutics. New York: McGraw-Hill; 2008. p. 519–36.Google Scholar
  49. 49.
    Buch J. Urapidil, a dual-acting antihypertensive agent: current usage considerations. Adv Ther. 2010;27(7):426–43.CrossRefGoogle Scholar
  50. 50.
    Sear JW. Br J Anesth. 2005;95(1):20–32.CrossRefGoogle Scholar
  51. 51.
    Oh SW, Han SY. Loop diuretics in clinical practice. Electrolyte Blood Press. 2015;13(1):17–21.CrossRefGoogle Scholar
  52. 52.
    Sear JW, Foex P. Recommendations on perioperative beta-blockers: differing guidelines: so what should the clinician do? Br J Anaesth. 2010;104(3):273–5.CrossRefGoogle Scholar
  53. 53.
    Poldermans D, Bax JJ, Boersma E, et al. Guidelines for pre-operative cardiac risk assessment and perioperative cardiac management in non-cardiac surgery: the Task Force for Preoperative Cardiac Risk Assessment and Perioperative Cardiac Management in Non-cardiac Surgery of the European Society of Cardiology (ESC) and endorsed by the European Society of Anaesthesiology (ESA). Eur Heart J. 2009;30:2769–812.CrossRefGoogle Scholar
  54. 54.
    Fleischmann KE, Beckman JA, Buller CE, et al. CCF/AHA focused update on perioperative beta blockade. J Am Coll Cardiol. 2009;54:2102–28.CrossRefGoogle Scholar
  55. 55.
    Intensive Care Society. Standards for intensive care units. 1996.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Stefano Orsenigo
    • 1
  • Marco Pulici
    • 1
  1. 1.Department of Anesthesia and Intensive CareNiguarda Ca’ Granda HospitalMilanItaly

Personalised recommendations