Sampling Wild Species to Conserve Genetic Diversity

  • Sean HobanEmail author
  • Gayle Volk
  • Kanin J. Routson
  • Christina Walters
  • Chris Richards


Sampling seed from natural populations of crop wild relatives requires choice of the locations and the amount of seed to sample. While this may seem like a simple choice, in fact careful planning of a collector’s sampling strategy is needed to ensure that a crop wild collection will contain high genetic variation, which is in turn needed for high potential for breeding or selection. Here we first describe the different conservation targets and intensities at which a collector might sample. We then review research on the appropriate number of populations, plants, and seeds to collect, and we review different methodologies available for helping to make these decisions. We suggest that samplers reconsider the long-standing minimum of 50 samples per population, as this will be insufficient in some cases. We explain that the optimal minimum number of populations, samples, and seeds can be determined with modeling approaches (niche modeling, a genetic survey, or simulations) that use knowledge of a species’ inherent traits (e.g., outcrossing rates) and geographic distribution. Lastly, we review some practical aspects of sampling, including the need to return to the source population to collect seed due to genetic change over time and the need to collect additional seed (sometimes 10 times as much seed) to account for loss of seed during storage and use. We also emphasize the utility of collecting abundant spatial and environmental data during seed sampling, as well as considering how samples will be used for accompanying genetic analyses, in order to make ex situ collections useful for research and breeding for many years to come.


Seed banks Arboreta Allele capture Ex situ Gene banks Genetic sampling Germplasm acquisition 


  1. Alvarado-Serrano DF, Knowles LL (2014) Ecological niche models in phylogeographic studies: applications, advances and precautions. Mol Ecol Resour 14:233–248CrossRefPubMedPubMedCentralGoogle Scholar
  2. Anderson JT (2015) Plant fitness in a rapidly changing world. New Phytol 210:81–87CrossRefPubMedPubMedCentralGoogle Scholar
  3. Arnaud JF, Cuguen J, Fénart S (2011) Metapopulation structure and fine-scaled genetic structuring in crop-wild hybrid weed beets. Heredity 107:395–404CrossRefPubMedPubMedCentralGoogle Scholar
  4. Basey AC, Fant JB, Kramer AT (2015) Producing native plant materials for restoration: 10 rules to collect and maintain genetic diversity. Native Plants J 16:37–53CrossRefGoogle Scholar
  5. Bataillon TM, David JL, Schoen DJ (1996) Neutral genetic markers and conservation genetics: simulated germplasm collections. Genetics 144:409–417PubMedPubMedCentralGoogle Scholar
  6. Brown AHD (1979) Isozymes, plant population genetic structure and genetic conservation. Theor Appl Genet 52:145–157CrossRefGoogle Scholar
  7. Brown AHD, Briggs JD (1991) Sampling strategies for genetic variation in ex situ collections of endangered plant species. In: Falk DA, Holsinger KE (eds) Genetics and conservation of rare plants. Oxford University Press, New York, pp 99–119Google Scholar
  8. Brown AHD, Marshall DR (1995) A basic sampling strategy: theory and practice. In: Guarino L et al (eds) Collecting plant genetic diversity: technical guidelines. CAB International, Wallingford, pp 75–91Google Scholar
  9. Bucharova A, Bossdorf O, Hölzel N, Kollmann J, Prasse R, Durka W (2018) Mix and match: regional admixture provenancing strikes a balance among different seed-sourcing strategies for ecological restoration. Conservation Genetics, pp.1–11.Google Scholar
  10. Castañeda-Álvarez NP, De Haan S, Juárez H, Khoury CK, Achicanoy HA, Sosa CC, Bernau V, Salas A, Heider B, Simon R, Maxted N (2015) Ex situ conservation priorities for the wild relatives of potato (Solanum L. section Petota). PLoS One, 10(4), p.e0122599.Google Scholar
  11. Caujapé-Castells J, Pedrola-Monfort J (2004) Designing ex-situ conservation strategies through the assessment of neutral genetic markers: application to the endangered Androcymbium gramineum. Conserv Genet 5:131–144CrossRefGoogle Scholar
  12. Cavender N, Westwood M, Bechtoldt C, Donnelly G, Oldfield S, Gardner M, Rae D, McNamara W (2015) Strengthening the conservation value of ex situ tree collections. Oryx 49:416–424CrossRefGoogle Scholar
  13. Center for Plant Conservation (1991) Genetic sampling guidelines for conservation collections of endangered plants. In: Falk DA, Holsinger KE (eds) Genetics and conservation of rare plants. Oxford University Press, New York, pp 225–238Google Scholar
  14. Damania AB (2008) History, achievements, and current status of genetic resources conservation. Agron J 100:9–21CrossRefGoogle Scholar
  15. Diniz-Filho JAF, Melo DB, de Oliveira G, Collevatti RG, Soares TN, Nabout JC, de Lima JS, Dobrovolski R, Chaves LJ, Naves RV, Loyola RD, de Telles MPC (2012) Planning for optimal conservation of geographical genetic variability within species. Conserv Genet 13:1085–1093CrossRefGoogle Scholar
  16. Endresen DTF, Knüpffer H (2012) The Darwin Core extension for genebanks opens up new opportunities for sharing genebank datasets. Biodivers Inform 8:12–29CrossRefGoogle Scholar
  17. Excoffier L, Dupanloup I, Huerta-Sánchez E et al (2013) Robust demographic inference from genomic and SNP data. PLoS Genet 9(10):e1003905CrossRefPubMedPubMedCentralGoogle Scholar
  18. Flower CE, Fant JB, Hoban S, Knight KS, Steger L, Aubihl E, Gonzalez-Meler MA, Forry S, Hille A, Royo AA (2018) Optimizing Conservation Strategies for a Threatened Tree Species: In Situ Conservation of White Ash (Fraxinus americana L.) Genetic Diversity through Insecticide Treatment. Forests, 9(4), p.202.Google Scholar
  19. Fordham DA, Brook BW, Moritz C, Nogués-Bravo D (2014) Better forecasts of range dynamics using genetic data. Trends Ecol Evol 29:436–443CrossRefPubMedPubMedCentralGoogle Scholar
  20. Forester BR, Jones MR, Joost S et al (2016) Detecting spatial genetic signatures of local adaptation in heterogeneous landscapes. Mol Ecol 25:104–120CrossRefPubMedPubMedCentralGoogle Scholar
  21. Gapare WJ, Yanchuk AD, Aitken SN (2008) Optimal sampling strategies for capture of genetic diversity differ between core and peripheral populations of Picea sitchensis (Bong.) Carr. Conserv Genet 9:411–418CrossRefGoogle Scholar
  22. Geng Q, Lian C, Goto S, Tao J, Kimura M, Islam MS, Hogetsu T (2008) Mating system, pollen and propagule dispersal, and spatial genetic structure in a high-density population of the mangrove tree Kandelia candel. Mol Ecol 17:4724–4739CrossRefPubMedPubMedCentralGoogle Scholar
  23. Godefroid S, Rivière S, Waldren S et al (2011) To what extent are threatened European plant species conserved in seed banks? Biol Conserv 144:1494–1498CrossRefGoogle Scholar
  24. Greene SL, Hart TC, Afonin A (1999) Using geographic information to acquire wild crop germplasm for ex situ collections: II. Post-collection analysis. Crop Sci 39:843–849CrossRefGoogle Scholar
  25. Greene SL, Kisha TJ, Yu L, Parra-Quijano M (2014) Conserving plants in gene banks and nature: investigating complementarity with Trifolium thompsonii Morton. PLoS One 9(8):e105145CrossRefPubMedPubMedCentralGoogle Scholar
  26. Griffith MP, Calonje M, Meerow AW et al (2015) Can a botanic garden cycad collection capture the genetic diversity in a wild population? Int J Plant Sci 176:1–10CrossRefGoogle Scholar
  27. Griffiths KE, Balding ST, Dickie JB, Lewis GP, Pearce TR, Grenyer R (2015) Maximizing the phylogenetic diversity of seed banks. Conserv Biol 29:370–381CrossRefPubMedPubMedCentralGoogle Scholar
  28. Guerrant EO, Havens K, Vitt P (2014) Sampling for effective ex situ plant conservation. Int J Plant Sci 175:11–20CrossRefGoogle Scholar
  29. Hajjar R, Hodgkin T (2007) The use of wild relatives in crop improvement: a survey of developments over the last 20 years. Euphytica 156:1–13CrossRefGoogle Scholar
  30. Hale ML, Burg TM, Steeves TE (2012) Sampling for microsatellite-based population genetic studies: 25 to 30 individuals per population is enough to accurately estimate allele frequencies. PLoS One 7:e45170CrossRefPubMedPubMedCentralGoogle Scholar
  31. Hall D, Luquez V, Garcia VM et al (2007) Adaptive population differentiation in phenology across a latitudinal gradient in European aspen (Populus tremula): a comparison of neutral markers, candidate genes and phenotypic traits. Evolution 61:2849–2860CrossRefPubMedPubMedCentralGoogle Scholar
  32. Hamrick JL, Godt MJW (1996) Effects of life history traits on genetic diversity in plant species. Philos Trans R Soc Lond Ser B Biol Sci 351:1291–1298CrossRefGoogle Scholar
  33. Harlan JR (1975) Our vanishing genetic resources. Science 188:618–621CrossRefGoogle Scholar
  34. Havens K, Vitt P, Still S et al (2015) Seed sourcing for restoration in an era of climate change. Nat Areas J 35:122–133CrossRefGoogle Scholar
  35. Hendry AP, Kinnison MT, Heino M et al (2011) Evolutionary principles and their practical application. Evol Appl 4:159–183CrossRefPubMedPubMedCentralGoogle Scholar
  36. Hipp AL, Eaton DA, Cavender-Bares J, Fitzek E, Nipper R, Manos PS (2014) A framework phylogeny of the American oak clade based on sequenced RAD data. PLoS One 9(4):e93975CrossRefPubMedPubMedCentralGoogle Scholar
  37. Hoban S, Schlarbaum S (2014) Optimal sampling of seeds from plant populations for ex-situ conservation of genetic biodiversity, considering realistic population structure. Biol Conserv 177:90–99CrossRefGoogle Scholar
  38. Hoban S, Strand A (2015) Ex situ seed collections will benefit from considering spatial sampling design and species’ reproductive biology. Biol Conserv 187:182–191CrossRefGoogle Scholar
  39. Hoban S, Way M (2016) Improving the sampling of seeds for conservation. Samara 2016:8–9Google Scholar
  40. Hoban SM, Borkowski DS, Brosi SL et al (2010) Range-wide distribution of genetic diversity in the North American tree Juglans cinerea: a product of range shifts, not ecological marginality or recent population decline. Mol Ecol 19:4876–4891CrossRefGoogle Scholar
  41. Hoban SM, Gaggiotti OE, Bertorelle G (2013) The number of markers and samples needed for detecting bottlenecks under realistic scenarios, with and without recovery: a simulation‐based study. Molecular ecology, 22(13), pp.3444–3450.Google Scholar
  42. Hoban SM, Schlarbaum SE, Brosi SL, Romero-Severson J (2012) A rare case of natural regeneration in butternut, a threatened forest tree, is parent and space limited. Conserv Genet 13:1447–1457CrossRefGoogle Scholar
  43. Hoban S, Arntzen JA, Bruford MW, Godoy JA, Rus Hoelzel A, Segelbacher G, Vilà C, Bertorelle G (2014) Comparative evaluation of potential indicators and temporal sampling protocols for monitoring genetic erosion. Evol Appl 7(9):984–998Google Scholar
  44. Hoban S, Strand A, Fraga N, Richards C, Schlarbaum S (2015) Developing quantitative seed sampling protocols using simulations: a reply to comments from Guja et al. and Guerrant et al. Biol Conserv 184:469–470CrossRefGoogle Scholar
  45. Hoban S, Kallow S, Trivedi C (2018) Implementing a new approach to effective conservation of genetic diversity with ash (Fraxinus excelsior) in the UK as a case study. Biological Conservation. in press
  46. Hoban S, Kelley JL, Lotterhos KE, Antolin MF, Bradburd G, Lowry DB, Poss ML, Reed LK, Storfer A, Whitlock MC (2016) Finding the genomic basis of local adaptation: pitfalls, practical solutions, and future directions. Am Nat 188:379–397CrossRefPubMedPubMedCentralGoogle Scholar
  47. Huenneke LF (1991) Ecological implications of genetic variation in plant populations p 31-44. In: Falk DA, Holsinger KE (eds) Genetics and conservation of rare plants. Oxford University Press, New YorkGoogle Scholar
  48. Jensen HR, Dreiseitl A, Sadiki M, Schoen DJ (2012) The Red Queen and the seed bank: pathogen resistance of ex situ and in situ conserved barley. Evol Appl 5:353–367CrossRefPubMedPubMedCentralGoogle Scholar
  49. Kashimshetty Y (2016) Population growth and genetic diversity dynamics of modeled conservation methodologies for threatened plant species. University of Cincinnati, PhD DissertationGoogle Scholar
  50. Kashimshetty Y, Simkins M, Pelikan S, Rogstad SH (2012) Founder placement and gene dispersal affect population growth and genetic diversity in restoration plantings of American chestnut. In: Çalişkan (ed) Genetic diversity in plants. INTECH Open Access Publisher.
  51. Keith DA, Akçakaya HR, Thuiller W, Midgley GF, Pearson RG, Phillips SJ, Rebelo TG (2008) Predicting extinction risks under climate change: coupling stochastic population models with dynamic bioclimatic habitat models. Biol Lett 4:560–563CrossRefPubMedPubMedCentralGoogle Scholar
  52. Khazaei H, Street K, Bari A, Mackay M, Stoddard FL (2013) The FIGS (Focused Identification of Germplasm Strategy) approach identifies traits related to drought adaptation in Vicia faba genetic resources. PLoS One 8:e63107CrossRefPubMedPubMedCentralGoogle Scholar
  53. Khoury C, Laliberté B, Guarino L (2010) Trends in ex situ conservation of plant genetic resources: a review of global crop and regional conservation strategies. Genet Resour Crop Evol 57:625–639CrossRefGoogle Scholar
  54. Khoury CK, Castañeda-Alvarez NP, Achicanoy HA et al (2015) Crop wild relatives of pigeonpea: distributions, ex situ conservation status, and potential genetic resources for abiotic stress tolerance. Biol Conserv 184:259–270CrossRefGoogle Scholar
  55. Kim C, Na HR, Jung J et al (2012) Determination of the minimum population size for ex situ conservation of water-shield (Brasenia schreberi JF Gmelin) inferred from AFLP analysis. J Ecol Environ 35:301–306CrossRefGoogle Scholar
  56. Kozak KH, Graham CH, Wiens JJ (2008) Integrating GIS-based environmental data into evolutionary biology. Trends Ecol Evol 23:141–148CrossRefPubMedPubMedCentralGoogle Scholar
  57. Landguth EL, Fedy BC, Oyler-McCance SA, Garey AL, Emel SL, Mumma M, Wagner HH, Fortin MJ, Cushman SA (2012) Effects of sample size, number of markers, and allelic richness on the detection of spatial genetic pattern. Mol Ecol Res 12:276–284CrossRefGoogle Scholar
  58. Lawrence MJ, Marshall DF, Davies P (1995) Genetics of genetic conservation. I. Sample size when collecting germplasm. Euphytica 84:89–99CrossRefGoogle Scholar
  59. Lockwood DR, Richards CM, Volk GM (2007a) Wild plant sampling strategies: the roles of ecology and evolution. Plant Breed Rev 29:285–313Google Scholar
  60. Lockwood DR, Richards CM, Volk GM (2007b) Probabilistic models for collecting genetic diversity: comparisons, caveats and limitations. Crop Sci 47:859–866CrossRefGoogle Scholar
  61. Lotterhos KE, Whitlock MC (2015) The relative power of genome scans to detect local adaptation depends on sampling design and statistical method. Mol Ecol 24:1031–1046CrossRefPubMedPubMedCentralGoogle Scholar
  62. Margules CR, Pressey RL (2000) Systematic conservation planning. Nature 405:243–253CrossRefPubMedPubMedCentralGoogle Scholar
  63. Marshall DR, Brown AHD (1975). Optimum sampling strategies in genetic conservation. In Crop genetic resources for today and tomorrow. No. REP-2308. CIMMYTGoogle Scholar
  64. Maxted N, Ford-Lloyd BV, Kell SP, Iriondo JM, Dulloo ME, Turok J (2008) Crop wild relative conservation and use. CABI, WallingfordGoogle Scholar
  65. McCouch SR, McNally KL, Wang W, Hamilton RS (2012) Genomics of gene banks: a case study in rice. Am J Bot 99(2):407–423Google Scholar
  66. McGlaughlin ME, Riley L, Brandsrud M et al (2015) How much is enough? Minimum sampling intensity required to capture extant genetic diversity in ex situ seed collections: examples from the endangered plant Sibara filifolia (Brassicaceae). Conser Genet 16:253–266CrossRefGoogle Scholar
  67. Menges ES, Guerrant EO, Hamzé S (2004) Effects of seed collection on the extinction risk of perennial plants. In: Guerrant E, Havens K, Maunder P (eds) Ex situ plant conservation: supporting species survival in the wild. Island Press, Washington, pp 305–324Google Scholar
  68. Meissen JC, Galatowitsch SM, Cornett MW (2017) Assessing long-term risks of prairie seed harvest: what is the role of life-history?. Botany, 95(11), pp.1081–1092.Google Scholar
  69. de Mita S, Thuillet AC, Gay L et al (2013) Detecting selection along environmental gradients: analysis of eight methods and their effectiveness for outbreeding and selfing populations. Mol Ecol 22:1383–1399CrossRefPubMedPubMedCentralGoogle Scholar
  70. Neale DB, Kremer A (2011) Forest tree genomics: growing resources and applications. Nature Reviews Genetics, 12(2), p.111.Google Scholar
  71. Ortego J, Riordan EC, Gugger PF, Sork VL (2012) Influence of environmental heterogeneity on genetic diversity and structure in an endemic southern Californian oak. Mol Ecol 21:3210–3223CrossRefPubMedPubMedCentralGoogle Scholar
  72. Oyler-McCance SJ, Fedy BC, Landguth EL (2013) Sample design effects in landscape genetics. Conserv Genet 14:275–285CrossRefGoogle Scholar
  73. Paillard S, Goldringer I, Enjalbert J, Trottet M, David J, de Vallavieille-Pope C, Brabant P (2000) Evolution of resistance against powdery mildew in winter wheat populations conducted under dynamic management. II. Adult plant resistance. Theor Appl Genet 101:457–462CrossRefGoogle Scholar
  74. Petit RJ, El Mousadik A, Pons O (1998) Identifying populations for conservation on the basis of genetic markers. Conserv Biol 12:844–855CrossRefGoogle Scholar
  75. Qualset CO, HL Shands (2005) Safeguarding the future of U.S. agriculture: the need to conserve threatened collections of crop diversity worldwide, report released on February 28, 2005 at a congressional briefing in Washington, DCGoogle Scholar
  76. Ramírez-Villegas J, Khoury C, Jarvis A, Debouck DG, Guarino L (2010) A gap analysis methodology for collecting crop genepools: a case study with Phaseolus beans. PLoS One 5:e13497CrossRefPubMedPubMedCentralGoogle Scholar
  77. Richards CM, Reilley A, Antolin M, Walters C (2007) Capturing genetic diversity of wild populations for ex situ conservation: endangered wildrice as a model. Genet Resour Crop Evol 54:837–848CrossRefGoogle Scholar
  78. Richards CM, Lockwood DR, Volk GM, Walters C (2010) Modeling demographics and genetic diversity in ex situ collections during seed storage and regeneration. Crop Sci 50:2440–2447CrossRefGoogle Scholar
  79. Schoen DJ, Brown AHD (2001) The conservation of wild plant species in seed banks attention to both taxonomic coverage and population biology will improve the role of seed banks as conservation tools. Bioscience 5:960–966CrossRefGoogle Scholar
  80. Schoettle AW, Sniezko RA (2007) Proactive intervention to sustain high-elevation pine ecosystems threatened by white pine blister rust. J For Res 12:327–336CrossRefGoogle Scholar
  81. Scossa F, Brotman Y, Lima FDA et al (2016) Genomics-based strategies for the use of natural variation in the improvement of crop metabolism. Plant Sci 242:47–64CrossRefGoogle Scholar
  82. Segelbacher G, Cushman SA, Epperson BK, Fortin M-J, Francois O, Hardy OJ, Holderegger R, Taberlet P, Waits LP, Manel S (2010) Applications of landscape genetics in conservation biology: concepts and challenges. Conserv Genet 11:375–385CrossRefGoogle Scholar
  83. Selkoe KA, Toonen RJ (2006) Microsatellites for ecologists: a practical guide to using and evaluating microsatellite markers. Ecol Lett 9:615–629CrossRefGoogle Scholar
  84. Swatdipong A, Vasemägi A, Koskinen MT et al (2009) Unanticipated population structure of European grayling in its northern distribution: implications for conservation prioritization. Front Zool 6:1CrossRefGoogle Scholar
  85. Syfert MM, Castañeda-Álvarez NP, Khoury CK et al (2016) Crop wild relatives of the brinjal eggplant (Solanum melongena): poorly represented in genebanks and many species at risk of extinction. Am J Bot 103:635–651CrossRefPubMedPubMedCentralGoogle Scholar
  86. Thormann I, Gaisberger H, Mattei F, Snook L, Arnaud E (2012) Digitization and online availability of original collecting mission data to improve data quality and enhance the conservation and use of plant genetic resources. Genet Resour Crop Evol 59:635–644CrossRefGoogle Scholar
  87. Thormann I, Reeves P, Thumm S, Reilley A, Engels JMM, Biradar CM, Lohwasser U, Börner A, Pillen K, Richards CM (2017) Genotypic and phenotypic changes in wild barley (Hordeum vulgare subsp. spontaneum) during a period of climate change in Jordan. Genet Resour Crop Evol 64:1295–1312CrossRefGoogle Scholar
  88. Thrall PH, Oakeshott JG, Fitt G et al (2011) Evolution in agriculture: the application of evolutionary approaches to the management of biotic interactions in agro-ecosystems. Evol Appl 4:200–215CrossRefPubMedPubMedCentralGoogle Scholar
  89. Trethowan RM, Mujeeb-Kazi A (2008) Novel germplasm resources for improving environmental stress tolerance of hexaploid wheat. Crop Sci 48:1255–1265CrossRefGoogle Scholar
  90. Turnbull LA, Crawley MJ, Rees M (2000) Are plant populations seed-limited? A review of seed sowing experiments. Oikos 88:225–238CrossRefGoogle Scholar
  91. Urban MC (2015) Accelerating extinction risk from climate change. Science 348:571–573CrossRefPubMedPubMedCentralGoogle Scholar
  92. Vekemans X, Hardy OJ (2004) New insights from fine-scale spatial genetic structure analyses in plant populations. Mol Ecol 13:921–935CrossRefPubMedPubMedCentralGoogle Scholar
  93. de Villemereuil P, Gaggiotti OE, Mouterde M, Till-Bottraud I (2016) Common garden experiments in the genomic era: new perspectives and opportunities. Heredity 116:249–254CrossRefPubMedPubMedCentralGoogle Scholar
  94. Vitt P, Havens K, Kramer AT et al (2010) Assisted migration of plants: changes in latitudes, changes in attitudes. Biol Conserv 143(1):18–27CrossRefGoogle Scholar
  95. Volk GM, Richards CM, Reilley AA, Henk AD, Forsline PL, Aldwinckle HS (2005) Ex situ conservation of vegetatively propagated species: development of a seed-based core collection for Malus sieversii. J Am Soc Hortic Sci 130:203–210Google Scholar
  96. Walters C, Rao NK, Xiaorong H (1998) Optimizing seed water content to improve longevity in ex situ genebanks. Seed Sci Res 8:15–22CrossRefGoogle Scholar
  97. Walters C, Berjak P, Pammenter N et al (2013) Preservation of recalcitrant seeds. Science 339:915–916CrossRefPubMedPubMedCentralGoogle Scholar
  98. Wang IJ, Bradburd GS (2014) Isolation by environment. Mol Ecol 23:5649–5662CrossRefGoogle Scholar
  99. Way MJ (2003) Collecting seed from non-domesticated plants for long-term conservation. In: Smith RD, Dickie JB, Linington SH, Pritchard HW, Probert RJ (eds) Seed conservation: turning science into practice. The Royal Botanic Gardens, Kew, London, pp 165–201Google Scholar
  100. Wieczorek J, Bloom D, Guralnick R, Blums S, Döring M, Giovanni R, Robertson T, Vieglais D (2012) Darwin Core: an evolving community-developed biodiversity data standard. PLoS One 7:29715CrossRefGoogle Scholar
  101. Windham MT, Graham ET, Witte WT, Knighten JL, Trigiano RN (1998) Cornus florida ‘Appalachian spring’: a white flowering dogwood resistant to dogwood anthracnose. Hortscience 33:1265–1267Google Scholar

Copyright information

© This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply 2018

Authors and Affiliations

  • Sean Hoban
    • 1
    Email author
  • Gayle Volk
    • 2
  • Kanin J. Routson
    • 3
    • 4
  • Christina Walters
    • 2
  • Chris Richards
    • 2
  1. 1.The Morton Arboretum, Center for Tree ScienceLisleUSA
  2. 2.USDA, Agricultural Research Service, Center for Agricultural Resources Research, National Laboratory for Genetic Resource PreservationFort CollinsUSA
  3. 3.University of Arizona, Arid Lands Resource SciencesTucsonUSA
  4. 4.Edge Mountain ResearchPrescottUSA

Personalised recommendations