Advertisement

Conservation Status and Threat Assessments for North American Crop Wild Relatives

  • Anne L. FrancesEmail author
  • Adam B. Smith
  • Colin K. Khoury
Chapter

Abstract

Conservation status and threat assessments evaluate species’ relative risks of extinction globally, regionally, nationally, or locally and estimate the degree to which populations of species are already safeguarded in existing conservation systems, with the aim of exposing the critical gaps in current conservation. Results of the assessments can therefore aid in directing limited conservation resources to the species and populations that are most at-risk. This chapter introduces the roles of conservation status and threat assessments in informing conservation priorities for crop wild relatives in North America and provides an overview of the current results for US taxa. Methods to assess the conservation status and to perform threat assessments for North American crop wild relatives are well developed via NatureServe and the International Union for Conservation of Nature (IUCN) Red List, and the essential infrastructure to perform these analyses is present, at least in Canada and the US. Current conservation assessments for North American wild relatives need updating but already reveal a landscape of multiple complex threats and major gaps in the ex situ and in situ conservation of prioritized species. Further resources and concerted efforts are needed to update conservation assessments and then to use the results to inform efforts to fill the critical gaps in conservation.

Keywords

Global rank Red List Ex situ In situ Threat assessment Gap analysis Conservation status 

References

  1. Araújo MB, Guisan A (2006) Five (or so) challenges for species distribution modelling. J Biogeogr 33(10):1677–1688CrossRefGoogle Scholar
  2. BGCI (Comp.) (2016). North American Botanic Garden Strategy for Plant Conservation, 2016-2020. Botanic Gardens Conservation International U.S. Illinois. http://northamericanplants.org/wp-content/uploads/2016/05/NAGSPC.pdf
  3. Budiharta S, Widyatmoko W, Irawati, Wiriadinata H, Rugayah et al (2011) The processes that threaten Indonesian plants. Oryx 45:172–179CrossRefGoogle Scholar
  4. Burgman MA, Keith D, Hopper SD, Widyatmoko D, Drill C (2007) Threat syndromes and conservation of the Australian flora. Biol Conserv 134:73–82CrossRefGoogle Scholar
  5. Castañeda-Álvarez NP, de Haan S, Juarez H, Khoury CK, Achicanoy HA, Sosa CC, Bernau V, Salas A, Heider B, Simon R, Maxted N, Spooner DM (2015) Ex situ conservation priorities for the wild relatives of potato (Solanum L. section Petota). PLoS One 10(4):e0122599CrossRefGoogle Scholar
  6. Castañeda-Álvarez NP, Khoury CK, Achicanoy H, Bernau V, Dempewolf H, Eastwood RJ, Guarino L, Harker RH, Jarvis A, Maxted N, Mueller JV, Ramírez-Villegas J, Sosa CC, Struik PC, Vincent H, Toll J (2016) Global conservation priorities for crop wild relatives. Nat Plants 2(4):16022CrossRefGoogle Scholar
  7. Collen B, Dulvy NK, Gaston KJ, Gärdenfors U, Keith DA, Punt AE et al (2016) Clarifying misconceptions of extinction risk assessment with the IUCN Red List. Biol Lett 12(4):20150843CrossRefGoogle Scholar
  8. Convention on Biological Diversity (2011) Conference of the Parties Decision X/2: Strategic plan for biodiversity 2011–2020. www.cbd.int/decision/cop/?id=12268
  9. Convention on Biological Diversity (2012) Global strategy for plant conservation: 2011-2020. Botanic Gardens Conservation International, Richmond, UK http://www.plants2020.net/files/Plants2020/GSPCbrochure/gspc_english.pdf Google Scholar
  10. Costa GC, Nogueira C, Machado RB, Colli GR (2010) Sampling bias and the use of ecological niche modeling in conservation planning: a field evaluation in a biodiversity hotspot. Biodivers Conserv 19:883–899CrossRefGoogle Scholar
  11. Dempewolf H, Eastwood RJ, Guarino L, Khoury CK, Müller JV, Toll J (2014) Adapting agriculture to climate change: a global initiative to collect, conserve, and use crop wild relatives. Agroecol Sust Food 38:369–377CrossRefGoogle Scholar
  12. Estill JC, Cruzen MB (2001) Phytogeography of rare plant species endemic to the Southeastern United States. Castanea 66:3–23Google Scholar
  13. Evans DM, Che-Castaldo JP, Crouse D, Davis FW, Epanchin-Niell E, Flather CH, et al. 2016. Species recovery in the United States: increasing the effectiveness of the endangered species act. Issues in Ecology. http://www.esa.org/esa/wp-content/uploads/2016/01/Issue20.pdf
  14. Faber-Langendoen D, Nichols J, Master L, Snow K, Tomaino A, Bittman R, Hammerson G, Heidel B, Ramsay L, Teucher A, Young B (2012) NatureServe conservation status assessments: methodology for assigning ranks. NatureServe, Arlington, VAGoogle Scholar
  15. Fick SE, Hijmans RJ (2017) WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int J Climatol 37(12):4302–4315CrossRefGoogle Scholar
  16. Fielder H, Brotherton P, Hosking J, Hopkins JJ, Ford-Lloyd B, Maxted N (2015) Enhancing the conservation of crop wild relatives in England. PLoS One 10(6):e0130804CrossRefGoogle Scholar
  17. Gaiji S, Chavan V, Ariño AH, Otegui J, Hobern D, Sood R et al (2013) Content assessment of the primary biodiversity data published through GBIF network: status, challenges and potentials. Biodivers Inform 8:94–172Google Scholar
  18. Graham C, Elith J, Hijmans RJ, Guisan A, Peterson AT, Loiselle BA et al (2008) The influence of spatial errors in species occurrence data used in distribution models. J Appl Ecol 45:239–247CrossRefGoogle Scholar
  19. Harlan JR (1976) Genetic resources in wild relatives of crops. Crop Sci 16:329–333CrossRefGoogle Scholar
  20. Hengl T, de Jesus JM, Heuvelink GB, Gonzalez MR, Kilibarda M, Blagotić A et al (2017) SoilGrids250m: global gridded soil information based on machine learning. PLoS One 12(2):e0169748CrossRefGoogle Scholar
  21. Hernández-Yáñez H, Kos JT, Bast MD, Griggs JL, Hage PA, Killian A, Whitmore MB, Loza ML, Smith AB (2016) A systematic assessment of threats affecting the rare plants of the United States. Biol Conserv 203:260–267CrossRefGoogle Scholar
  22. Hijmans RJ (2012) Cross-validation of species distribution models: removing spatial sorting bias and calibration with a null model. Ecology 93:679–688CrossRefGoogle Scholar
  23. Hijmans RJ, Graham C (2006) The ability of climate envelope models to predict the effect of climate change on species distributions. Glob Change Biol 12:2272–2281CrossRefGoogle Scholar
  24. Hijmans RJ, Spooner D (2001) Geographic distribution of wild potato species. Am J Bot 88:2101–2112CrossRefGoogle Scholar
  25. Hijmans RJ, Guarino L, Cruz M, Rojas E (2001) Computer tools for spatial analysis of plant genetic resources data: 1. DIVA-GIS Plant Genet Res Newsl 127:15–19Google Scholar
  26. Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978CrossRefGoogle Scholar
  27. IUCN (2012) IUCN Red List categories and criteria: version 3.1. Second edition. Gland, Switzerland and Cambridge, UK: IUCN. iv + 32pp. http://s3.amazonaws.com/iucnredlist-newcms/staging/public/attachments/3097/redlist_cats_crit_en.pdf
  28. IUCN (2017a) Plants for people. https://www.iucn.org/theme/species/our-work/plants/plants-people [Verified 6 November 2017]
  29. IUCN (2017b) Safeguarding Mesoamerican crop wild relatives. http://www.psmesoamerica.org/en/ [Verified 6 November 2017]
  30. IUCN Standards and Petitions Subcommittee (2017) Guidelines for using the IUCN Red List categories and criteria. Version 13. Prepared by the Standards and Petitions Subcommittee http://www.iucnredlist.org/documents/RedListGuidelines.pdf
  31. Jarvis A, Ferguson M, Williams D, Guarino L, Jones P, Stalker H et al (2003) Biogeography of wild Arachis: assessing conservation status and setting future priorities. Crop Sci 43:1100–1108CrossRefGoogle Scholar
  32. Jennings DE, Rohr JR (2011) A review of conservation threats to carnivorous plants. Biol Conserv 144:1356–1363CrossRefGoogle Scholar
  33. Jimenez-Valverde A, Lobo JM, Hortal J (2008) Not as good as they seem: the importance of concepts in species distribution modelling. Divers Distrib 14:885–890CrossRefGoogle Scholar
  34. Kantar MB, Sosa CC, Khoury CK, Castañeda-Álvarez NP, Achicanoy HA, Bernau V, Kane N, Marek L, Sieler G, Rieseberg LH (2015) Ecogeography and utility to plant breeding of the crop wild relatives of sunflower (Helianthus annuus L.). Front Plant Sci 6:841CrossRefGoogle Scholar
  35. Khoury CK, Greene S, Wiersema J, Maxted N, Jarvis A, Struik PC (2013) An inventory of crop wild relatives of the United States. Crop Sci 53(4):1496CrossRefGoogle Scholar
  36. Khoury CK, Castañeda Álvarez NP, Achicanoy H, Sosa CC, Bernau V, Kassa MT et al (2015) Crop wild relatives of pigeonpea [Cajanus cajan (L.) Millsp.]: distributions, ex situ conservation status, and potential genetic resources for abiotic stress tolerance. Biol Conserv 184:259–270CrossRefGoogle Scholar
  37. Khoury CK, Heider B, Castañeda-Álvarez NP, Achicanoy HA, Sosa CC, Miller RE, Scotland RW, Wood JRI, Rossel G, Eserman LA, Jarret RL, Yencho GC, Bernau V, Juarez H, Sotelo S, de Haan S, Struik PC (2015a) Distributions, ex situ conservation priorities, and genetic resource potential of crop wild relatives of sweetpotato [Ipomoea batatas (L.) Lam., I. series Batatas]. Front Plant Sci 6:251CrossRefGoogle Scholar
  38. Kramer A, Hird A, Shaw K, Dosmann M, Mims R (2011) Conserving North America’s threatened plants: progress report on target 8 of the global strategy for plant conservation. Botanic Gardens Conservation International U.S., Glencoe, ILGoogle Scholar
  39. Lobo JM, Jimenez-Valverde A, Hortal J (2010) The uncertain nature of absences and their importance in species distribution modeling. Ecography 33:103–114CrossRefGoogle Scholar
  40. Loiselle BA, Jorgensen PM, Consiglio T, Jimenez I, Blake JG, Lohmann LG et al (2008) Predicting species distributions from herbarium collections, does climate bias in collection sampling influence model outcomes? J. Biogeographica 35(1):105–116Google Scholar
  41. Master LL (1991) Assessing threats and setting priorities for conservation. Conserv Biol 5(4):559–563CrossRefGoogle Scholar
  42. Master L, Faber-Langendoen D, Bittman R, Hammerson GA, Heidel B, Ramsay L, Snow K, Teucher A, Tomaino A (2012) NatureServe conservation status assessments: factors for evaluating species and ecosystem risk. NatureServe, Arlington, VAGoogle Scholar
  43. McCouch S, Baute G, Bradeen J, Bramel P, Bretting PK, Buckler E et al (2013) Agriculture: feeding the future. Nature 499:23–24CrossRefGoogle Scholar
  44. Meilleur BA, Hodgkin T (2004) In situ conservation of crop wild relatives: status and trends. Biodivers Conserv 13(4):663–684CrossRefGoogle Scholar
  45. Moray C, Game ET, Maxted N (2014) Prioritising in situ conservation of crop resources: a case study of African cowpea (Vigna unguiculata). Sci Rep 4:5247CrossRefGoogle Scholar
  46. Murray KA, Verde LD, Arregoitia V, Davidson A, Di Marco M, Do Fonzo MMD (2014) Threat to the point: improving the value of comparative extinction risk for conservation analysis. Glob Chang Biol 20:483–494CrossRefGoogle Scholar
  47. Nabhan GP (1990) Wild phaseolus ecogeography in the Sierra Madre occidental, Mexico: areographic techniques for targeting and conserving species diversity. Systematic and ecogeographic studies on crop genepools 5. International Board of Plant Genetic Resources, RomeGoogle Scholar
  48. Negrón-Ortiz V (2014) Pattern of expenditures for plant conservation under the endangered species act. Biol Conserv 171:36–43CrossRefGoogle Scholar
  49. Olson DM, Dinerstein E, Wikramanayake ED, Burgess ND, Powell GVN, Underwood EC et al (2001) Terrestrial ecoregions of the world: a new map of life on earth. Bioscience 51:933–938CrossRefGoogle Scholar
  50. Parra-Quijano M, Iriondo JM, Torres E (2012) Improving representativeness of Genebank collections through species distribution models, gap analysis and ecogeographical maps. Biodivers Conserv 21(1):79–96CrossRefGoogle Scholar
  51. Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190:231–259CrossRefGoogle Scholar
  52. Prescott OL, Stewart GB (2014) Assessing the impact of human trampling on vegetation: a systematic review and meta-analysis of experimental evidence. PeerJ 2:e360CrossRefGoogle Scholar
  53. Ramírez-Villegas J, Khoury C, Jarvis A, Debouck DG, Guarino L (2010) A gap analysis methodology for collecting crop genepools: a case study with Phaseolus beans. PLoS One 5:e13497CrossRefGoogle Scholar
  54. Regan TJ, Burgman MA, McCarthy MA, Master LL, Keith DA, Mace GM, Andelman SJ (2005) The consistency of extinction risk classification protocols. Conserv Biol 19:1969–1977CrossRefGoogle Scholar
  55. Salafsky N, Salzer D, Stattersfield AJ, Hilton-Taylor C, Neugarten R, Butchart SHM et al (2008) A standard lexicon for biodiversity conservation: unified classifications of threats and actions. Conserv Biol 22:897–911CrossRefGoogle Scholar
  56. Seiler GJ, Qi LL, Marek LF (2017) Utilization of sunflower crop wild relatives for cultivated sunflower improvement. Crop Sci 57:1–19CrossRefGoogle Scholar
  57. Stein BA, Gravuer K (2008) Hidden in plain sight: the role of plants in state wildlife action plans. NatureServe, Arlington, VAGoogle Scholar
  58. Tapia C, Torres E, Parra-Quijano M (2014) Searching for adaptation to abiotic stress: ecogeographical analysis of highland Ecuadorian maize. Crop Sci 55(1):262–274CrossRefGoogle Scholar
  59. USDA Forest Service. 2016. Chiltepine or Bird Pepper (Capsicum annuum var. galbriusculum). http://www.fs.fed.us/wildflowers/beauty/Sky_Islands/plants/Capsicum_annuum/index.shtml [Verified 10 October 2017]
  60. USDA Forest Service and Agricultural Research Service (2014) USDA Forest Service and Agricultural Research Service Strategy for the Complementary Conservation of Wild Cranberry (Vaccinium macrocarpon Ait. and V. oxycoccos) Genetic Resources and Protocols for Collecting Genetic Material, Germplasm, and Herbarium VouchersGoogle Scholar
  61. Volk GM, Chao CT, Norelli J, Brown SK, Fazio G, Peace C, McFerson J, Zhong G-Y, Bretting P (2015) The vulnerability of US apple (Malus) genetic resources. Genet Resour Crop Evol 62(5):765–794CrossRefGoogle Scholar
  62. Wallace TP, Bowman D, Campbell BT, Chee P, Gutierrez OA, Kohel RJ, McCarty J et al (2009) Status of the USA cotton germplasm collection and crop vulnerability. Genet Resour Crop Evol 56(4):507–532CrossRefGoogle Scholar
  63. Westwood M, Frances A, Man G, Pivorunas D, Potter KM (2017) Coordinating the IUCN Red List of North American tree species: A special session at the USFS gene conservation of tree species workshop. In: Sniezko RA, Man G, Hipkins V, Woeste K, Gwaze D, Kliejunas JT, McTeague BA, tech. cords (eds). 2017Gene conservation of tree species—banking on the future. Proceedings of a workshop. Gen. Tech. Rep. PNW-GTR-963. U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station, Portland, OR, pp 12–23Google Scholar
  64. Wilkes G (2007) Urgent notice to all maize researchers: disappearance and extinction of the last wild teosinte population is more than half completed. A modest proposal for teosinte evolution and conservation in situ: the Balsas, Guerrero, Mexico. Maydica 52:49–58Google Scholar

Copyright information

© This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply 2018

Authors and Affiliations

  • Anne L. Frances
    • 1
    Email author
  • Adam B. Smith
    • 2
  • Colin K. Khoury
    • 3
    • 4
  1. 1.NatureServeArlingtonUSA
  2. 2.Missouri Botanical GardenSt. LouisUSA
  3. 3.USDA, Agricultural Research Service, Center for Agricultural Resources Research, National Laboratory for Genetic Resources PreservationFort CollinsUSA
  4. 4.International Center for Tropical Agriculture (CIAT)CaliColombia

Personalised recommendations