A Novel Auxetic Structure with Enhanced Impact Performance by Means of Periodic Tessellation with Variable Poisson’s Ratio

  • M. Taylor
  • L. Francesconi
  • A. Baldi
  • X. Liang
  • F. Aymerich
Conference paper
Part of the Conference Proceedings of the Society for Experimental Mechanics Series book series (CPSEMS)


This study proposes a new approach to designing impact resistant elastomeric structures using innovative bi-dimensional patterns composed of a combination of circular and elliptical voids with variable aspect ratios. Key to the design are discrete sections each with different effective Poisson’s ratios ranging from negative to positive. Cubic samples 80 × 80 × 80 cm in size with different void geometry and effective Poisson’s ratios were fabricated and successively tested under compressive and low-velocity impact loads as a proof-of-concept, showing good agreement with finite element simulations.

The numerical comparisons for different porosity levels demonstrated that the variable Poisson’s ratio materials resulted in better impact responses compared to those characterized by a positive (constant) value of the effective Poisson’s ratio. The promising results also show that the variable shape of the voids can lead to a modular trigger of overall effective auxetic behavior, opening up new ways design and use auxetic macro-structures with variable porosity and variable Poisson’s ratio for a wide range of applications and, in particular, for impact and protecting devices.


Auxetic structures Impact Variable Poisson’s ratio Digital image correlation Buckling 


  1. 1.
    Landau, L.D., Lifshitz, E.M.: Theory of Elasticity, vol. 7. Pergamon Press, Oxford (1970)zbMATHGoogle Scholar
  2. 2.
    Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Dover, New York (1944)zbMATHGoogle Scholar
  3. 3.
    Ashby, M.F., Jones, D.R.H.: Engineering Materials 1: an Introduction to their Properties and Applications. Butterworth Heinemann, Oxford (1996)Google Scholar
  4. 3.
    Lakes, R.: Advances in negative Poisson’s ratio materials. Adv. Mater. 5, 293–296 (1993)CrossRefGoogle Scholar
  5. 4.
    Greaves, G.N., Greer, A.L., Lakes, R.S., Rouxel, T.: Poisson’s ratio and modern materials. Nat. Mater. 10, 823–837 (2011)CrossRefGoogle Scholar
  6. 5.
    Prawoto, Y.: Seeing auxetic materials from the mechanics point of view: a structural review on the negative Poisson’s ratio. Comput. Mater. Sci. 58, 140–153 (2012)CrossRefGoogle Scholar
  7. 6.
    Stavroulakis, G.E.: Auxetic behaviour: appearance and engineering applications. Phys. Status Solidi B. 242(3), 710–720 (2005)CrossRefGoogle Scholar
  8. 7.
    Evans, K.E., Alderson, A.: Auxetic materials: functional materials and structures from lateral thinking. Adv. Mater. 12(9), 617–628 (2000)CrossRefGoogle Scholar
  9. 8.
    Javid, F., Liu, J., Rafsanjani, A., Schaenzer, M., Pham, M.Q., Backman, D., Yandt, S., Innes, M.C., Booth-Morrison, C., Gerendas, M., Scarinci, T., Shanian, A., Bertoldi, K.: On the design of porous structures with enhanced fatigue life. Extreme Mech. Lett. 16, 13–17 (2017)CrossRefGoogle Scholar
  10. 9.
    Wojciechowski, K.W., Branka, A.C.: Negative Poisson ratio in a two-dimensional “isotropic” solid. Phys. Rev. Lett. A. 40, 7222–7225 (1989)CrossRefGoogle Scholar
  11. 10.
    Lakes, R.S., Lowe, A.: Negative Poisson’s ratio foam as seat cushion material. Cell. Polym. 19, 157–167 (2000)Google Scholar
  12. 11.
    Lakes, R.: Foam structures with a negative Poisson’s ratio. Science. 235, 1038–1040 (1987)CrossRefGoogle Scholar
  13. 12.
    Scarpa, F., Giacomin, J., Zhang, Y., Pastorino, P.: Mechanical performance of auxetic polyurethane foam for antivibration glove applications. Cell. Polym. 24(5), 1–16 (2005)Google Scholar
  14. 13.
    Bianchi, M., Scarpa, F.L., Smith, C.W.: Stiffness and energy dissipation in polyurethane auxetic foams. J. Mater. Sci. 43(17), 5851–5860 (2008)CrossRefGoogle Scholar
  15. 14.
    Chan, N., Evans, K.E.: Fabrication methods for auxetic foams. J Mater Sci. 32(22), 5945–5953 (1997)CrossRefGoogle Scholar
  16. 15.
    Chan, N., Evans, K.E.: Microscopic examination of the microstructure and deformation of conventional and auxetic foams. J. Mater. Sci. 32(21), 5725–5736 (1997)CrossRefGoogle Scholar
  17. 16.
    Bertoldi, K., Reis, P.M., Willshaw, S., Mullin, T.: Negative Poisson’s ratio behavior induced by an elastic instability. Adv. Mater. 22(3), 361–366 (2010)CrossRefGoogle Scholar
  18. 17.
    Kureta, R., Kanno, Y.: A mixed integer programming approach to designing periodic frame structures with negative Poisson’s ratio. Optim. Eng. 15(3), 773–800 (2014)MathSciNetCrossRefGoogle Scholar
  19. 18.
    Wojciechowski, K.W.: Two-dimensional isotropic system with a negative Poisson ratio. Phys. Lett. A. 137(1–2), 60–64 (1989)CrossRefGoogle Scholar
  20. 19.
    Shim, J., Perdigou, C., Chen, E.R., Bertoldi, K., Reis, P.M.: Buckling-induced encapsulation of structured elastic shells under pressure. Proc. Natl. Acad. Sci. U. S. A. 109, 5978–5983 (2012)CrossRefGoogle Scholar
  21. 20.
    Taylor, M., Francesconi, L., Gerendás, M., Shanian, A., Carson, C., Bertoldi, K.: Low porosity metallic periodic structures with negative poisson's ratio. Adv. Mater. 26(15), 2365–2370 (2013)CrossRefGoogle Scholar
  22. 21.
    Milstein, F., Huang, K.: Existence of a negative Poisson ratio in fcc crystals. Phys. Rev. B. 19, 2030–2033 (1979)CrossRefGoogle Scholar
  23. 22.
    Ravirala, N., Alderson, A., Alderson, K.L., Davies, P.J.: Auxetic polypropylene films. Polym. Eng. Sci. 45(4), 517–528 (2005)CrossRefGoogle Scholar
  24. 23.
    Grima, J.N., Jackson, R., Alderson, A., Evans, K.E.: Do zeolites have negative Poisson’s ratios? Adv. Mater. 12(24), 1912–1918 (2000)CrossRefGoogle Scholar
  25. 24.
    Herakovich, C.T.: Composite laminates with negative through-the-thickness Poisson’s ratios. J. Compos. Mater. 18(5), 447–455 (1984)CrossRefGoogle Scholar
  26. 25.
    Doyoyo, M., Wan Hu, J.: Plastic failure analysis of an auxetic foam or inverted strut lattice under longitudinal and shear loads. J. Mech. Phys. Solids. 54(7), 1479–1492 (2006)CrossRefGoogle Scholar
  27. 26.
    Ali, M.N., Rehman, I.U.: An Auxetic structure configured as oesophageal stent with potential to be used for palliative treatment of oesophageal cancer; development and in vitro mechanical analysis. J. Mater. Sci. Mater. Med. 22(11), 2573–2581 (2011)CrossRefGoogle Scholar
  28. 27.
    Caddock, B.D., Evans, K.E.: Negative Poisson ratios and strain-dependent mechanical properties in arterial prostheses. Biomaterials. 16, 1109–1115 (1995)CrossRefGoogle Scholar
  29. 28.
    Dolla, W.J.S., Fricke, B.A., Becker, B.R.: Structural and drug diffusion models of conventional and Auxetic drug-eluting stents. J Med Devices. 1, 47–55 (2007)CrossRefGoogle Scholar
  30. 29.
    Alderson, A., Rasburn, J., Evans, K.E., Grima, J.N.: Auxetic polymeric filters display enhanced de-fouling and pressure- compensation properties. Membr. Technol. 137, 6–8 (2001)CrossRefGoogle Scholar
  31. 30.
    Alderson, A., Alderson, K.: Expanding materials and applications: exploiting auxetic textiles. Tech. Text. 14, 29–34 (2005)Google Scholar
  32. 31.
    Ellul, B., Muscat, M., Grima, J.N.: On the effect of the Poisson’s ratio (positive and negative) on the stability of pressure vessel heads. Phys. Status Solidi B. 246(9), 2025–2032 (2009)CrossRefGoogle Scholar
  33. 32.
    Francesconi, L., Taylor, M., Bertoldi, K.: Baldi, static and modal analysis of low porosity thin metallic Auxetic structures using speckle interferometry and digital image correlation. Exp. Mech. 58(2), 283–300 (2018)CrossRefGoogle Scholar
  34. 33.
    Grima, J.N., Evans, K.E.: Auxetic behavior from rotating squares. J. Mater. Sci. Lett. 19(17), 1563–1565 (2000)CrossRefGoogle Scholar
  35. 34.
    Grima, J., Gatt, R.: Perforated sheets exhibiting negative poisson’s ratios. Adv. Eng. Mater. 12, 460–464 (2010)CrossRefGoogle Scholar
  36. 35.
    Sanami, M., Ravirala, N., Alderson, K., Alderson, A.: Auxetic materials for sports applications. Procedia Eng. 72, 453–458 (2014)CrossRefGoogle Scholar
  37. 36.
    Wan, H., Ohtaki, H., Kotosaka, S., Hu, G.: A study of negative Poisson’s ratios in auxetic honeycombs based on a large deflection model, European journal of mechanics. Eur. J. Mech. A. Solids. 23(1), 95–106 (2004)CrossRefGoogle Scholar
  38. 37.
    Scarpa, F., Panayiotou, P., Tomlinson, G.: Numerical and experimental uniaxial loading on in-plane auxetic honeycombs. J. Strain Anal. Eng. Des. 35(5), 383–388 (2000)CrossRefGoogle Scholar

Copyright information

© The Society for Experimental Mechanics, Inc. 2019

Authors and Affiliations

  • M. Taylor
    • 1
  • L. Francesconi
    • 1
  • A. Baldi
    • 2
  • X. Liang
    • 1
  • F. Aymerich
    • 2
  1. 1.Department of Mechanical EngineeringSanta Clara UniversitySanta ClaraUSA
  2. 2.Dipartimento di Ingegneria Meccanica, Chimica e dei MaterialiUniversità degli Studi di CagliariCagliariItaly

Personalised recommendations