Learning to Program a Humanoid Robot: Impact on Special Education Students

  • Julien Bugmann
  • Thierry KarsentiEmail author


Robots are making steady inroads into the world of education, where they are used mainly to teach students about computer programming or coding. These versatile tools allow for student learning through experimenting with programs which lead to the building and control of real objects. However, although these teaching aides are increasingly incorporated into everyday classrooms, few studies have examined the affordances they provide to students with special needs. An exploratory study with the aim of examining the educational benefits for programming of a new type of humanoid robot called NAO for special education students was therefore conducted. A variety of data collection methods, including interviews, videotaped observations, and trace analysis were used. The results show a number of positive student outcomes: they developed coding skills and improved in several areas critical to scholastic success, such as increased motivation to attend school, peer collaboration, and task engagement.


Coding Humanoid robot Special needs Learning School 


  1. Caudrelier, T., & Foerster, F. (2015). Contribution des robots sociaux aux thérapies des troubles du spectre autistique: une revue critique. IC2A, 25.Google Scholar
  2. Centelles, L., Assaiante, C., Etchegoyhen, K., Bouvard, M., & Schmitz, C. (2012). Understanding social interaction in children with autism spectrum disorders: Does whole-body motion mean anything to them? L’Encephale, 38(3), 232–240. CrossRefGoogle Scholar
  3. Duncan, C., & Bell, T. (2015). A pilot computer science and programming course for primary school students. In Proceedings of the Workshop in Primary and Secondary Computing Education (pp. 39–48). New York: ACM. CrossRefGoogle Scholar
  4. Falloon, G. (2016). An analysis of young students’ thinking when completing basic coding tasks using Scratch Jnr. On the iPad. Journal of Computer Assisted Learning, 32(6), 576–593. CrossRefGoogle Scholar
  5. Fridin, M. (2014). Storytelling by a kindergarten social assistive robot: A tool for constructive learning in preschool education. Computers & Education, 70, 53–64. CrossRefGoogle Scholar
  6. Hood, D., Lemaignan, S., & Dillenbourg, P. (2015). When children teach a robot to write: An autonomous teachable humanoid which uses simulated handwriting. In Proceedings of the Tenth Annual ACM/IEEE International Conference on Human-Robot Interaction (pp. 83–90). New York: ACM. CrossRefGoogle Scholar
  7. Jaillet, A., & Larose, F. (2009). Le numérique dans l’enseignement et la formation: Analyses, traces et usages. Paris: Editions L’Harmattan.Google Scholar
  8. Kalelioğlu, F. (2015). A new way of teaching programming skills to K-12 students: Computers in Human Behavior, 52, 200–210. CrossRefGoogle Scholar
  9. Karsenti, T., Bugmann, J., & Frenette, E. (2017). Un robot humanoïde pour aider les élèves ayant un trouble du spectre de l’autisme? Vivre le primaire, 30(2), 34–37.Google Scholar
  10. Kazakoff, E. R., Sullivan, A., & Bers, M. U. (2013). The effect of a classroom-based intensive robotics and programming workshop on sequencing ability in early childhood. Early Childhood Education Journal, 41(4), 245–255. CrossRefGoogle Scholar
  11. Kim, E. S., Berkovits, L. D., Bernier, E. P., Leyzberg, D., Shic, F., Paul, R., et al. (2013). Social robots as embedded reinforcers of social behavior in children with autism. Journal of Autism and Developmental Disorders, 43(5), 1038–1049. CrossRefGoogle Scholar
  12. Kim, S., & Lee, C. (2016). Effects of robot for teaching geometry to fourth graders. International Journal of Innovation in Science and Mathematics Education (Formerly CAL-Laborate International), 24(2). Consulté à l’adresse
  13. Komis, V., & Misirli, A. (2013). Étude des processus de construction d’algorithmes et de programmes par les petits enfants à l’aide de jouets programmables. Présenté à Sciences et technologies de l’information et de la communication (STIC) en milieu éducatif. Consulté à l’adresse
  14. Kradolfer, S., Dubois, S., Riedo, F., Mondada, F., & Fassa, F. (2014). A sociological contribution to understanding the use of robots in schools: The Thymio robot. In Social robotics (pp. 217–228). Cham: Springer. CrossRefGoogle Scholar
  15. L’Écuyer, R. (1990). Méthodologie de L’Analyse Développementale de Contenu: Méthode Gps et Concept de Soi. Quebec: PUQ.Google Scholar
  16. Lemaignan, S., Jacq, A., Hood, D., Garcia, F., Paiva, A., & Dillenbourg, P. (2016). Learning by teaching a robot: The case of handwriting. IEEE Robotics Automation Magazine, 23(2), 56–66. CrossRefGoogle Scholar
  17. Miles, M. B., & Huberman, A. M. (2003). Analyse des données qualitatives. Paris: De Boeck Supérieur.Google Scholar
  18. Moreno-León, J., Robles, G., & Román-González, M. (2016). Code to learn: Where does it belong in the K-12 curriculum? Journal of Information Technology Education: Research, 15, 283–303.CrossRefGoogle Scholar
  19. Mubin, O., Stevens, C. J., Shahid, S., Mahmud, A. A., & Dong, J. J. (2013). A review of the applicability of robots in education. Technology for Education and Learning, 1(209–0015), 13. CrossRefGoogle Scholar
  20. Nijimbere, C., Boulc’h, L., Haspekian, M., & Baron, G. L. (2013). Apprendre l’informatique par la programmation des robots. Présenté à Sciences et technologies de l’information et de la communication (STIC) en milieu éducatif. Consulté à l’adresse
  21. OECD. (2015). Schooling Redesigned | OECD READ edition. Consulté à l’adresse
  22. Robins, B., Amirabdollahian, F., Ji, Z., & Dautenhahn, K. (2010). Tactile interaction with a humanoid robot for children with autism: A case study analysis involving user requirements and results of an initial implementation. In 19th International Symposium in Robot and Human Interactive Communication (pp. 704–711). Piscataway: IEEE. CrossRefGoogle Scholar
  23. Ruf, A., Mühling, A., & Hubwieser, P. (2014). Scratch vs. Karel: Impact on learning outcomes and motivation. In Proceedings of the 9th Workshop in Primary and Secondary Computing Education (pp. 50–59). New York: ACM. CrossRefGoogle Scholar
  24. Saez-Lopez, J. M., Miller, J., Vázquez-Cano, E., & Dominguez-Garrido, M. C. (2015). Exploring Application, Attitudes and Integration of Video Games: MinecraftEdu in Middle School (SSRN Scholarly Paper No. ID 2700646). Rochester, NY: Social Science Research Network. Consulté à l’adresse
  25. Shamsuddin, S., Yussof, H., Ismail, L. I., Mohamed, S., Hanapiah, F. A., & Zahari, N. I. (2012). Humanoid robot NAO interacting with autistic children of moderately impaired intelligence to augment communication skills. Procedia Engineering, 41, 1533–1538. CrossRefGoogle Scholar
  26. Shiomi, M., Kanda, T., Howley, I., Hayashi, K., & Hagita, N. (2015). Can a social robot stimulate science curiosity in classrooms? International Journal of Social Robotics, 7(5), 641–652. CrossRefGoogle Scholar
  27. Smith, N., Sutcliffe, C., & Sandvik, L. (2014). Code Club: Bringing programming to UK primary schools through scratch. In Proceedings of the 45th ACM Technical Symposium on Computer Science Education (pp. 517–522). New York: ACM. CrossRefGoogle Scholar
  28. Toh, L. P. E., Causo, A., Tzuo, P.-W., Chen, I.-M., & Yeo, S. H. (2016). A review on the use of robots in education and young children. Journal of Educational Technology & Society, 19(2), 148–163.Google Scholar
  29. Trudel, L., Simard, C., & Vonarx, N. (2006). La recherche qualitative est-elle nécessairement exploratoire?. Recherches qualitatives, 38–45. In Actes du colloque (Vol. 5, pp. 38–45).Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.University of MontrealMontrealCanada

Personalised recommendations