A Practical Approach to Retinal Dystrophies

  • Irena Tsui
  • Brian J. Song
  • Chyuan-Sheng Lin
  • Stephen H. TsangEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1085)


Genomic approaches to developing new diagnostic and therapeutic strategies in retinal dystrophies are among the most advanced applications of genetics (Tsang SH, Gouras P (1996) Molecular physiology and pathology of the retina. In: Duane TD, Tasman W, Jaeger AE (eds) Duane’s clinical opthalmology. Lippincott-Raven, Philadelphia). The notion that “nothing can be done” for patients with retinal dystrophies is no longer true. Electrophysiological testing and autofluorescence imaging help to diagnose and predict the patient’s course of disease. Better phenotyping can contribute to better-directed, cost-efficient genotyping. Combining fundoscopy, autofluorescent imaging, and electrophysiological testing is essential in approaching patients with retinal dystrophies. Emerging are new gene-based treatments for these devastating conditions.


Inherited retinal dystrophy Clinical examination Imaging 



This chapter previously appeared in the April 2007 issue of Retinal Physician, published by Pentavision LLC; reprinted with permission.


  1. Acland GM, Aguirre GD, Ray J, Zhang Q, Aleman TS, Cideciyan AV, et al. Gene therapy restores vision in a canine model of childhood blindness. Nat Genet. 2001;28:92–5.PubMedGoogle Scholar
  2. Acland GM, Aguirre GD, Bennett J, Aleman TS, Cideciyan AV, Bennicelli J, et al. Long-term restoration of rod and cone vision by single dose rAAV-mediated gene transfer to the retina in a canine model of childhood blindness. Mol Ther. 2005;12:1072–82.CrossRefGoogle Scholar
  3. Allikmets R, Singh N, Sun H, Shroyer NF, Hutchinson A, Chidambaram A, et al. A photoreceptor cell-specific ATP-binding transporter gene (ABCR) is mutated in recessive Stargardt macular dystrophy. Nat Genet. 1997;15:236–46.CrossRefGoogle Scholar
  4. Asper Ophthalmics. ABCR genetic testing. Available at: (2007). Accessed 20 Mar 2007.
  5. Atan D, Gregory Evans CY, Louis D, Downes SM. Sorsby fundus dystrophy presenting with choroidal neovascularisation showing good response to steroid treatment. Br J Ophthalmol. 2004;88:440–1.CrossRefGoogle Scholar
  6. Bainbridge JW, Tan MH, Ali RR. Gene therapy progress and prospects: the eye. Gene Ther. 2006;13:1191–7.CrossRefGoogle Scholar
  7. Bennett J, Tanabe T, Sun D, Zeng Y, Kjeldbye H, Gouras P, Maguire AM. Photoreceptor cell rescue in retinal degeneration (rd) mice by in vivo gene therapy. Nat Med. 1996;2:649–54.CrossRefGoogle Scholar
  8. Berson E. Electroretinographic testing as an aid in determining visual prognosis in families with hereditary retinal degenerations. New York: Retina Congress Appleton-Century-Crofts; 1974.Google Scholar
  9. Berson EL. Retinitis pigmentosa. The Friedenwald lecture. Invest Ophthalmol Vis Sci. 1993;34:1659–76.PubMedGoogle Scholar
  10. Berson EL, Gouras P, Gunkel RD. Rod responses in retinitis pigmentosa, dominantly inherited. Arch Ophthalmol. 1968;80:58–67.CrossRefGoogle Scholar
  11. Berson EL, Rosen JB, Simonoff EA. Electroretinographic testing as an aid in detection of carriers of X-chromosome-linked retinitis pigmentosa. Am J Ophthalmol. 1979;87:460–8.CrossRefGoogle Scholar
  12. Berson EL, Rosner B, Sandberg MA, Hayes KC, Nicholson BW, Weigel-DiFranco C, Willett W. A randomized trial of vitamin A and vitamin E supplementation for retinitis pigmentosa. Arch Ophthalmol. 1993;111:761–72.CrossRefGoogle Scholar
  13. Berson EL, Rosner B, Sandberg MA, Weigel-DiFranco C, Moser A, Brockhurst RJ, et al. Further evaluation of docosahexaenoic acid in patients with retinitis pigmentosa receiving vitamin A treatment: subgroup analyses. Arch Ophthalmol. 2004;122:1306–14.CrossRefGoogle Scholar
  14. Bird AC. Retinal photoreceptor dystrophies LI. Edward Jackson Memorial Lecture. Am J Ophthalmol. 1995;119:543–62.CrossRefGoogle Scholar
  15. Bui TV, Han Y, Radu RA, Travis GH, Mata NL. Characterization of native retinal fluorophores involved in biosynthesis of A2E and lipofuscin-associated retinopathies. J Biol Chem. 2006;281:18112–9.CrossRefGoogle Scholar
  16. Claridge KG, Gibberd FB, Sidey MC. Refsum disease: the presentation and ophthalmic aspects of Refsum disease in a series of 23 patients. Eye. 1992;6:371–5.CrossRefGoogle Scholar
  17. Columbia University Medical Center. Stem Cell Consortium. Available at: (2007). Accessed 20 Mar 2007.
  18. Daiger SP, Bowne SJ, Sullivan LS. Perspective on genes and mutations causing retinitis pigmentosa. Arch Ophthalmol. 2007;125:151–8.CrossRefGoogle Scholar
  19. Daniele S, Carbonara A, Daniele C, Restagno G, Orcidi F. Pattern dystrophies of the retinal pigment epithelium. Acta Ophthalmol Scand. 1996;74:51–5.CrossRefGoogle Scholar
  20. Delori FC, Staurenghi G, Arend O, Dorey CK, Goger DG, Weiter JJ. In vivo measurement of lipofuscin in Stargardt’s disease – fundus flavimaculatus. Invest Ophthalmol Vis Sci. 1995;36:2327–31.PubMedGoogle Scholar
  21. Dunaief JL, Kwun RC, Bhardwaj N, Lopez R, Gouras P, Goff SP. Retroviral gene transfer into retinal pigment epithelial cells followed by transplantation into rat retina. Hum Gene Ther. 1995;6:1225–9.CrossRefGoogle Scholar
  22. Fishman GA, Apushkin MA. Continued use of dorzolamide for the treatment of cystoid macular oedema in patients with retinitis pigmentosa. Br J Ophthalmol. 2007;91:743–5.CrossRefGoogle Scholar
  23. Fishman GA, Jacobson SG, Alexander KR, Cideciyan AV, Birch DG, Weleber RG, Hood DC. Outcome measures and their application in clinical trials for retinal degenerative diseases: outline, review, and perspective. Retina. 2005;25:772–7.CrossRefGoogle Scholar
  24. Francis PJ, Schultz DW, Gregory AM, Schain MB, Barra R, Majewski J, et al. Genetic and phenotypic heterogeneity in pattern dystrophy. Br J Ophthalmol. 2005;89:1115–9.CrossRefGoogle Scholar
  25. GeneTests Home Page. Available at: (2007). Accessed 20 Mar 2007.
  26. Gouras P, Eggers HM, MacKay CJ. Cone dystrophy, nyctalopia, and supernormal rod responses. A new retinal degeneration. Arch Ophthalmol. 1983;101:718–24.CrossRefGoogle Scholar
  27. Gouras P, Kong J, Tsang SH. Retinal degeneration and RPE transplantation in Rpe65(−/−) mice. Invest Ophthalmol Vis Sci. 2002;43:3307–11.PubMedGoogle Scholar
  28. Grant CA, Berson EL. Treatable forms of retinitis pigmentosa associated with systemic neurological disorders. Int Ophthalmol Clin. 2001;41:103–10.CrossRefGoogle Scholar
  29. Greenstein VC, Zaidi Q, Hood DC, Spehar B, Cideciyan AV, Jacobson SG. The enhanced S cone syndrome: an analysis of receptoral and post-receptoral changes. Vis Res. 1996;36:3711–22.CrossRefGoogle Scholar
  30. Gregory CY, Evans K, Wijesuriya SD, Kermani S, Jay MR, Plant C, et al. The gene responsible for autosomal dominant Doyne’s honeycomb retinal dystrophy (DHRD) maps to chromosome 2p16. Hum Mol Genet. 1996;5:1055–9.CrossRefGoogle Scholar
  31. Heckenlively JR, Arden GB. Principles and practice of clinical electrophysiology of vision. 2nd ed. Cambridge, MA: MIT Press; 2006.CrossRefGoogle Scholar
  32. Heckenlively JR, Fawzi AA, Oversier J, Jordan BL, Aptsiauri N. Autoimmune retinopathy: patients with antirecoverin immunoreactivity and panretinal degeneration. Arch Ophthalmol. 2000;118:1525–33.CrossRefGoogle Scholar
  33. Holder GE. Pattern electroretinography (PERG) and an integrated approach to visual pathway diagnosis. Prog Retin Eye Res. 2001;20:531–61.CrossRefGoogle Scholar
  34. Holopigian K, Greenstein VC, Seiple W, Hood DC, Carr RE. Rod and cone photoreceptor function in patients with cone dystrophy. Invest Ophthalmol Vis Sci. 2004;45:275–81.CrossRefGoogle Scholar
  35. Hood DC, Birch DG. Beta wave of the scotopic (rod) electroretinogram as a measure of the activity of human on-bipolar cells. J Opt Soc Am A Opt Image Sci Vis. 1996;13:623–33.CrossRefGoogle Scholar
  36. International Society for Clinical Electrophysiology of Vision. Standards, recommendations and guidelines. Available at: (2007). Accessed 20 Mar 2007.
  37. Jaakson K, Zernant J, Külm M, Hutchinson A, Tonisson N, Glavac D, et al. Genotyping microarray (gene chip) for the ABCR (ABCA4) gene. Hum Mutat. 2003;22:395–403.CrossRefGoogle Scholar
  38. Kaiser-Kupfer MI, Caruso RC, Valle D, Reed FG. Use of an arginine-restricted diet to slow progression of visual loss in patients with gyrate atrophy. Arch Ophthalmol. 2004;122:982–4.CrossRefGoogle Scholar
  39. Khan JA, Ide CH, Strickland MP. Coats’-type retinitis pigmentosa. Surv Ophthalmol. 1998;32:317–32.CrossRefGoogle Scholar
  40. Koenekoop RK. The gene for Stargardt disease, ABCA4, is a major retinal gene: a mini-review. Ophthalmic Genet. 2003;24:75–80.CrossRefGoogle Scholar
  41. Kurz-Levin MM, Halfyard AS, Bunce C, Bird AC, Holder GE. Clinical variations in assessment of bull’s-eye maculopathy. Arch Ophthalmol. 2002;120:567–75.CrossRefGoogle Scholar
  42. Leroy BP, Hogg CR, Rath PR, McBain V, Kestelyn P, Bird AC, Holder GE. Clinical features & retinal function in patients with adult Refsum syndrome. Adv Exp Med Biol. 2003;544:57–8.CrossRefGoogle Scholar
  43. Li T, Sandberg MA, Pawlyk BS, Rosner B, Hayes KC, Dryja TP, Berson EL. Effect of vitamin a supplementation on rhodopsin mutants threonine-17 --> methionine and proline-347 --> serine in transgenic mice and in cell cultures. Proc Natl Acad Sci U S A. 1998;95:11933–8.CrossRefGoogle Scholar
  44. Lois N, Holder GE, Bunce C, Fitzke FW, Bird AC. Phenotypic subtypes of Stargardt macular dystrophy-fundus flavimaculatus. Arch Ophthalmol. 2001;119:359–69.CrossRefGoogle Scholar
  45. Lois N, Halfyard AS, Bird AC, Holder GE, Fitzke FW. Fundus autofluorescence in Stargardt macular dystrophy-fundus flavimaculatus. Am J Ophthalmol. 2004;138:55–63.CrossRefGoogle Scholar
  46. MacDonald IM, Sereda C, McTaggart K, Mah D. Choroideremia gene testing. Expert Rev Mol Diagn. 2004;4:478–84.CrossRefGoogle Scholar
  47. MacLaren RE, Pearson RA, MacNeil A, Douglas RH, Salt TE, Akimoto M, et al. Retinal repair by transplantation of photoreceptor precursors. Nature. 2006;444:203–7.CrossRefGoogle Scholar
  48. Michaelides M, Aligianis IA, Holder GE, Simunovic M, Mollon JD, Maher ER, et al. Cone dystrophy phenotype associated with a frameshift mutation (M280fsX291) in the α-subunit of cone specific transducin (GNAT2). Br J Ophthalmol. 2003;87:1317–20.CrossRefGoogle Scholar
  49. Michaelides M, Hunt DM, Moore AT. The cone dysfunction syndromes. Br J Ophthalmol. 2004;88:291–7.CrossRefGoogle Scholar
  50. Michaelides M, Johnson S, Simunovic MP, Bradshaw K, Holder G, Mollon JD, et al. Blue cone monochromatism: a phenotype and genotype assessment with evidence of progressive loss of cone function in older individuals. Eye. 2005;19:2–10.CrossRefGoogle Scholar
  51. Michaelides M, Hardcastle AJ, Hunt DM, Moore AT. Progressive cone and cone-rod dystrophies: phenotypes and underlying molecular genetic basis. Surv Ophthalmol. 2006;51:232–58.CrossRefGoogle Scholar
  52. Milam AH, Rose L, Cideciyan AV, Barakat MR, Tang WX, Gupta N, et al. The nuclear receptor NR2E3 plays a role in human retinal photoreceptor differentiation and degeneration. Proc Natl Acad Sci U S A. 2002;99:473–8.CrossRefGoogle Scholar
  53. Nakamura M, Hotta Y, Tanikawa A, Terasaki H, Miyake Y. A high association with cone dystrophy in fundus albipunctatus caused by mutations of the RDH5 gene. Invest Ophthalmol Vis Sci. 2000;41:3925–32.PubMedGoogle Scholar
  54. National Eye Institute. Information for doctors who follow patients with retinitis pigmentosa. Available at: (2007). Accessed 20 Mar 2007.
  55. National Eye Institute. National Ophthalmic Disease Genotyping Network (eyeGENE). Available at: (2007). Accessed 20 Mar 2007.
  56. Norton EW. A randomized trial of vitamin a and vitamin E supplementation for retinitis pigmentosa [comment]. Arch Ophthalmol. 1993;111:1460. author reply 1463–5CrossRefGoogle Scholar
  57. Robson AG, El-Amir A, Bailey C, Egan CA, Fitzke FW, Webster AR, et al. Pattern ERG correlates of abnormal fundus autofluorescence in patients with retinitis pigmentosa and normal visual acuity. Invest Ophthalmol Vis Sci. 2003;44:3544–50.CrossRefGoogle Scholar
  58. Robson AG, Egan CA, Luong VA, Bird AC, Holder GE, Fitzke FW. Comparison of fundus autofluorescence with photopic and scotopic fine-matrix mapping in patients with retinitis pigmentosa and normal visual acuity. Invest Ophthalmol Vis Sci. 2004;45:4119–25.CrossRefGoogle Scholar
  59. Salchow DJ, Gouras P, Doi K, Goff SP, Schwinger E, Tsang SH. A point mutation (W70A) in the rod PDE-gamma gene desensitizing and delaying murine rod photoreceptors. Invest Ophthalmol Vis Sci. 1999;40:3262–7.PubMedPubMedCentralGoogle Scholar
  60. Sharon D, Sandberg MA, Caruso RC, Berson EL, Dryja TP. Shared mutations inNR2E3 in enhanced S-cone syndrome, Goldmann-Favre syndrome, and many cases of clumped pigmentary retinal degeneration. Arch Ophthalmol. 2003;121:1316–23.CrossRefGoogle Scholar
  61. Sibulesky L, Hayes KC, Pronczuk A, Weigel-DiFranco C, Rosner B, Berson EL. Safety of <7500 RE (<25000 IU) vitamin A daily in adults with retinitis pigmentosa. Am J Clin Nutr. 1999;69:656–63.CrossRefGoogle Scholar
  62. Sieving PA. The National Eye Institute: translational clinical research initiatives on inherited and orphan retinal diseases: personal observations. Retina. 2005;25:S8–9.CrossRefGoogle Scholar
  63. Sieving PA, Collins FS. Genetic ophthalmology and the era of clinical care. JAMA. 2007;297:733–6.CrossRefGoogle Scholar
  64. Sieving PA, Caruso RC, Tao W, Coleman HR, Thompson DJ, Fullmer KR, Bush RA. Ciliary neurotrophic factor (CNTF) for human retinal degeneration: phase I trial of CNTF delivered by encapsulated cell intraocular implants. Proc Natl Acad Sci U S A. 2006;103:3896–901.CrossRefGoogle Scholar
  65. Simunovic MP, Moore AT. The cone dystrophies. Eye. 1998;12:553–65.CrossRefGoogle Scholar
  66. Sparrow JR, Boulton M. RPE lipofuscin and its role in retinal pathobiology. Exp Eye Res. 2005;80:595–606.CrossRefGoogle Scholar
  67. Stone EM. Challenges in genetic testing for clinical trials of inherited and orphan retinal diseases. Retina. 2005;25:S72–3.CrossRefGoogle Scholar
  68. Stone EM. Genetic testing for inherited eye disease. Arch Ophthalmol. 2007;125:205–12.CrossRefGoogle Scholar
  69. Taylor D, Hoyt CS. Pediatric ophthalmology and strabismus. 3rd ed. Elsevier Saunders: New York, NY; 2005.Google Scholar
  70. Traboulsi EI. Genetic diseases of the eye. New York: Oxford University Press; 1998.Google Scholar
  71. Tsang SH, Gouras P. Molecular physiology and pathology of the retina. In: Duane TD, Tasman W, Jaeger AE, editors. Duane’s clinical opthalmology. Philadelphia: Lippincott-Raven; 1996.Google Scholar
  72. Tsang SH, Gouras P, Yamashita CK, Kjeldbye H, Fisher J, Farber DB, Goff SP. Retinal degeneration in mice lacking the gamma subunit of rod cGMP phosphodiesterase. Science. 1996;272:1026–9.CrossRefGoogle Scholar
  73. Tsang SH, Burns ME, Calvert PD, Gouras P, Baylor DA, Goff SP, Arshavsky VY. Role for the target enzyme in deactivation of photoreceptor G protein in vivo. Science. 1998;282:117–21.CrossRefGoogle Scholar
  74. Tsang SH, Woodruff ML, Chen CK, Yamashita CY, Cilluffo MC, Rao AL, et al. GAP-independent termination of photoreceptor light response by excess gamma subunit of the cGMP-phosphodiesterase. J Neurosci. 2006a;26:4472–80.CrossRefGoogle Scholar
  75. Tsang SH, Woodruff ML, Jun L, Mahajan V, Yamashita CK, Pedersen R, et al. Transgenic mice carrying the H258N mutation in the gene encoding the beta-subunit of phosphodiesterase-6 (PDE6B) provide a model for human congenital stationary night blindness. Hum Mutat. 2006b;28:243–54.CrossRefGoogle Scholar
  76. von Ruckmann A, Fitzke FW, Bird AC. Distribution of fundus autofluorescence with a scanning laser ophthalmoscope. Br J Ophthalmol. 1995;79:407–12.CrossRefGoogle Scholar
  77. Weleber RG. Inherited and orphan retinal diseases: phenotypes, genotypes, and probable treatment groups. Retina. 2005;25:S4–7.CrossRefGoogle Scholar
  78. Yannuzzi LA, Guyer DR, Green WR. The retina atlas. St. Louis: Mosby; 1995.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Irena Tsui
    • 1
  • Brian J. Song
    • 2
  • Chyuan-Sheng Lin
    • 3
  • Stephen H. Tsang
    • 4
    • 5
    Email author
  1. 1.Department of OphthalmologyDavid Geffen School of Medicine at UCLA, Doheny Eye Institute, UCLAArcadiaUSA
  2. 2.Department of OphthalmologyMassachusetts Eye and Ear Infirmary, Harvard Medical SchoolBostonUSA
  3. 3.Department of Pathology and Cell BiologyHerbert Irving Comprehensive Cancer Center, Columbia University Medical CenterNew YorkUSA
  4. 4.Jonas Children’s Vision Care, Bernard & Shirlee Brown Glaucoma Laboratory, Columbia Stem Cell Initiative-Departments of Ophthalmology, Biomedical Engineering, Pathology & Cell Biology, Institute of Human Nutrition, Vagelos College of Physicians and Surgeons, Columbia UniversityNew YorkUSA
  5. 5.Department of Ophthalmology, Columbia UniversityEdward S. Harkness Eye Institute, NewYork-Presbyterian HospitalNew YorkUSA

Personalised recommendations