PBMarsNet: A Multivariate Adaptive Regression Splines Based Method to Reconstruct Gene Regulatory Networks

  • Siyu Zhao
  • Ruiqing Zheng
  • Xiang Chen
  • Yaohang Li
  • Fang-Xiang Wu
  • Min LiEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10847)


Gene Regulatory Network (GRN) is a directed graph which describes the regulations between genes. The problem of reconstructing GRNs has been studied for decades. Most of existing methods infer the GRNs from gene expression data. Previous studies use random forest, partial least squares or other feature selection techniques to solve it. In this paper, we propose a Multivariate Adaptive Regression Splines (MARS) based method to estimate the feature importance and reconstruct the GRNs. MARS can catch the nonlinear relationships between genes. To avoid the overfitting and make the estimation robust, we apply an ensemble model of MARS based on bootstrap and weighted features by PMI (Part mutual information), called PBMarsNet. The results show that PBMarsNet performs better than the state-of-the-art methods.


Gene Regulatory Network Gene expression MARS PCA-PMI 


Fund Sponsored

This work was supported in part by the National Natural Science Foundation of China No. 61622213, No. 61732009, No. 61772552 and No. 61728211.


  1. 1.
    Zhu, H., Snyder, M.: Protein chip technology. Curr. Opin. Chem. Biol. 7(1), 55–63 (2003)CrossRefGoogle Scholar
  2. 2.
    Zhao, J., Sun, B.K., Erwin, J.A., Song, J.J., Lee, J.T.: Polycomb proteins targeted by a short repeat RNA to the mouse X chromosome. Science 322(5902), 750–756 (2008)CrossRefGoogle Scholar
  3. 3.
    Frenzel, S., Pompe, B.: Partial mutual information for coupling analysis of multivariate time series. Phys. Rev. Lett. 99(20), 204101 (2007)CrossRefGoogle Scholar
  4. 4.
    Faith, J.J., Hayete, B., Thaden, J.T., Mogno, I., Wierzbowski, J., Cottarel, G., Kasif, S., Collins, J.J., Gardner, T.S.: Large-scale mapping and validation of Escherichia coli transcriptional regulation from a compendium of expression profiles. PLoS Biol. 5(1), e8 (2007)CrossRefGoogle Scholar
  5. 5.
    Lachmann, A., Giorgi, F.M., Lopez, G., Califano, A.: ARACNe-AP: gene network reverse engineering through adaptive partitioning inference of mutual information. Bioinformatics 32(14), 2233–2235 (2016)CrossRefGoogle Scholar
  6. 6.
    Meyer, P.E., Kontos, K., Lafitte, F., Bontempi, G.: Information-theoretic inference of large transcriptional regulatory networks. EURASIP J. Bioinf. Syst. Biol. 2007, 8 (2007)CrossRefGoogle Scholar
  7. 7.
    Zhang, X., Zhao, X.M., He, K., Lu, L., Cao, Y., Liu, J., Hao, J.K., Liu, Z.P., Chen, L.: Inferring gene regulatory networks from gene expression data by path consistency algorithm based on conditional mutual information. Bioinformatics 28(1), 98–104 (2011)CrossRefGoogle Scholar
  8. 8.
    Zhang, X., Zhao, J., Hao, J.K., Zhao, X.M., Chen, L.: Conditional mutual inclusive information enables accurate quantification of associations in gene regulatory networks. Nucleic Acids Res. 43(5), e31 (2014)CrossRefGoogle Scholar
  9. 9.
    Zhao, J., Zhou, Y., Zhang, X., Chen, L.: Part mutual information for quantifying direct associations in networks. Proc. Nat. Acad. Sci. 113(18), 5130–5135 (2016)CrossRefGoogle Scholar
  10. 10.
    Zhou, X., Wang, X., Pal, R., Ivanov, I., Bittner, M., Dougherty, E.R.: A Bayesian connectivity-based approach to constructing probabilistic gene regulatory networks. Bioinformatics 20(17), 2918–2927 (2004)CrossRefGoogle Scholar
  11. 11.
    Werhli, A.V., Husmeier, D.: Reconstructing gene regulatory networks with Bayesian networks by combining expression data with multiple sources of prior knowledge. Stat. Appl. Genet. Mol. Biol. 6(1) (2007)Google Scholar
  12. 12.
    Shermin, A., Orgun, M.A.: Using dynamic Bayesian networks to infer gene regulatory networks from expression profiles. In: ACM Symposium on Applied Computing, pp. 799–803 (2009)Google Scholar
  13. 13.
    Li, Y., Chen, H., Zheng, J., Ngom, A.: The max-min high-order dynamic Bayesian network for learning gene regulatory networks with time-delayed regulations. IEEE/ACM Trans. Comput. Biol. Bioinform. (TCBB) 13(4), 792–803 (2016)CrossRefGoogle Scholar
  14. 14.
    Zheng, J., Chaturvedi, I., Rajapakse, J.C.: Integration of epigenetic data in Bayesian network modeling of gene regulatory network. In: Loog, M., Wessels, L., Reinders, M.J.T., de Ridder, D. (eds.) PRIB 2011. LNCS, vol. 7036, pp. 87–96. Springer, Heidelberg (2011). Scholar
  15. 15.
    Liu, F., Zhang, S.W., Guo, W.F., Wei, Z.G., Chen, L.: Inference of gene regulatory network based on local bayesian networks. PLoS Comput. Biol. 12(8), e1005024 (2016)CrossRefGoogle Scholar
  16. 16.
    Omranian, N., Eloundou-Mbebi, J.M., Mueller-Roeber, B., Nikoloski, Z.: Gene regulatory network inference using fused LASSO on multiple data sets. Sci. Rep. 6, 20533 (2016)CrossRefGoogle Scholar
  17. 17.
    Haury, A.C., Mordelet, F., Vera-Licona, P., Vert, J.P.: TIGRESS: trustful inference of gene regulation using stability selection. BMC Syst. Biol. 6(1), 145 (2012)CrossRefGoogle Scholar
  18. 18.
    Singh, N., Vidyasagar, M.: bLARS: an algorithm to infer gene regulatory networks. IEEE/ACM Trans. Comput. Biol. Bioinf. 13(2), 301–314 (2016)CrossRefGoogle Scholar
  19. 19.
    Guo, S., Jiang, Q., Chen, L., Guo, D.: Gene regulatory network inference using PLS-based methods. BMC Bioinform. 17(1), 545 (2016)CrossRefGoogle Scholar
  20. 20.
    Yao, S., Yoo, S., Yu, D.: Prior knowledge driven Granger causality analysis on gene regulatory network discovery. BMC Bioinform. 16(1), 273 (2015)CrossRefGoogle Scholar
  21. 21.
    Li, M., Zheng, R., Li, Y., Wu, F.X., Wang, J.: MGT-SM: a method for constructing cellular signal transduction networks. IEEE/ACM Trans. Comput. Biol. Bioinform. (2017)Google Scholar
  22. 22.
    Irrthum, A., Wehenkel, L., Geurts, P., et al.: Inferring regulatory networks from expression data using tree-based methods. PLoS One 5(9), e12776 (2010)CrossRefGoogle Scholar
  23. 23.
    Ruyssinck, J., Geurts, P., Dhaene, T., Demeester, P., Saeys, Y., et al.: NIMEFI: gene regulatory network inference using multiple ensemble feature importance algorithms. PLoS One 9(3), e92709 (2014)CrossRefGoogle Scholar
  24. 24.
    Huynh-Thu, V.A., Sanguinetti, G.: Combining tree-based and dynamical systems for the inference of gene regulatory networks. Bioinformatics 31(10), 1614–1622 (2015)CrossRefGoogle Scholar
  25. 25.
    Greenfield, A., Madar, A., Ostrer, H., Bonneau, R.: DREAM4: combining genetic and dynamic information to identify biological networks and dynamical models. PLoS One 5(10), e13397 (2010)CrossRefGoogle Scholar
  26. 26.
    Marbach, D., Costello, J.C., Küffner, R., Vega, N.M., Prill, R.J., Camacho, D.M., Allison, K.R., Aderhold, A., Bonneau, R., Chen, Y., et al.: Wisdom of crowds for robust gene network inference. Nat. Methods 9(8), 796 (2012)CrossRefGoogle Scholar
  27. 27.
    Schaffter, T., Marbach, D., Floreano, D.: GeneNetWeaver: in silico benchmark generation and performance profiling of network inference methods. Bioinformatics 27(16), 2263–2270 (2011)CrossRefGoogle Scholar
  28. 28.
    Friedman, J.H.: Multivariate adaptive regression splines. Ann. Stat. 1–67 (1991)Google Scholar
  29. 29.
    Xu, Q.S., Massart, D., Liang, Y.Z., Fang, K.T.: Two-step multivariate adaptive regression splines for modeling a quantitative relationship between gas chromatography retention indices and molecular descriptors. J. Chromatogr. A 998(1–2), 155–167 (2003)CrossRefGoogle Scholar
  30. 30.
    Weber, G.W., Batmaz, İ., Köksal, G., Taylan, P., Yerlikaya-Özkurt, F.: CMARS: a new contribution to nonparametric regression with multivariate adaptive regression splines supported by continuous optimization. Inverse Prob. Sci. Eng. 20(3), 371–400 (2012)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Friedman, J., Hastie, T., Tibshirani, R.: The Elements of Statistical Learning. Springer Series in Statistics, vol. 1. Springer, New York (2001). Scholar
  32. 32.
    Friedman, J.H.: Estimating functions of mixed ordinal and categorical variables using adaptive splines. Technical report, Stanford Univ., CA, Lab for Computational Statistics (1991)Google Scholar
  33. 33.
    Zhou, Y., Leung, H.: Predicting object-oriented software maintainability using multivariate adaptive regression splines. J. Syst. Softw. 80(8), 1349–1361 (2007)CrossRefGoogle Scholar
  34. 34.
    Friedman, J.H.: Fast MARS. Computational Statistics Laboratory of Stanford University (1993)Google Scholar
  35. 35.
    Yu, H., Luscombe, N.M., Qian, J., Gerstein, M.: Genomic analysis of gene expression relationships in transcriptional regulatory networks. Trends Genet. 19(8), 422–427 (2003)CrossRefGoogle Scholar
  36. 36.
    Margolin, A.A., Wang, K., Lim, W.K., Kustagi, M., Nemenman, I., Califano, A.: Reverse engineering cellular networks. Nat. Protoc. 1(2), 662 (2006)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Siyu Zhao
    • 1
  • Ruiqing Zheng
    • 1
  • Xiang Chen
    • 1
  • Yaohang Li
    • 3
  • Fang-Xiang Wu
    • 2
  • Min Li
    • 1
    Email author
  1. 1.School of Information Science and EngineeringCentral South UniversityChangshaChina
  2. 2.Department of Mechanical Engineering and Division of Biomedical EngineeringUniversity of SaskatchewanSaskatoonCanada
  3. 3.Department of Computer ScienceOld Dominion UniversityNorfolkUSA

Personalised recommendations