PBMarsNet: A Multivariate Adaptive Regression Splines Based Method to Reconstruct Gene Regulatory Networks
Abstract
Gene Regulatory Network (GRN) is a directed graph which describes the regulations between genes. The problem of reconstructing GRNs has been studied for decades. Most of existing methods infer the GRNs from gene expression data. Previous studies use random forest, partial least squares or other feature selection techniques to solve it. In this paper, we propose a Multivariate Adaptive Regression Splines (MARS) based method to estimate the feature importance and reconstruct the GRNs. MARS can catch the nonlinear relationships between genes. To avoid the overfitting and make the estimation robust, we apply an ensemble model of MARS based on bootstrap and weighted features by PMI (Part mutual information), called PBMarsNet. The results show that PBMarsNet performs better than the state-of-the-art methods.
Keywords
Gene Regulatory Network Gene expression MARS PCA-PMINotes
Fund Sponsored
This work was supported in part by the National Natural Science Foundation of China No. 61622213, No. 61732009, No. 61772552 and No. 61728211.
References
- 1.Zhu, H., Snyder, M.: Protein chip technology. Curr. Opin. Chem. Biol. 7(1), 55–63 (2003)CrossRefGoogle Scholar
- 2.Zhao, J., Sun, B.K., Erwin, J.A., Song, J.J., Lee, J.T.: Polycomb proteins targeted by a short repeat RNA to the mouse X chromosome. Science 322(5902), 750–756 (2008)CrossRefGoogle Scholar
- 3.Frenzel, S., Pompe, B.: Partial mutual information for coupling analysis of multivariate time series. Phys. Rev. Lett. 99(20), 204101 (2007)CrossRefGoogle Scholar
- 4.Faith, J.J., Hayete, B., Thaden, J.T., Mogno, I., Wierzbowski, J., Cottarel, G., Kasif, S., Collins, J.J., Gardner, T.S.: Large-scale mapping and validation of Escherichia coli transcriptional regulation from a compendium of expression profiles. PLoS Biol. 5(1), e8 (2007)CrossRefGoogle Scholar
- 5.Lachmann, A., Giorgi, F.M., Lopez, G., Califano, A.: ARACNe-AP: gene network reverse engineering through adaptive partitioning inference of mutual information. Bioinformatics 32(14), 2233–2235 (2016)CrossRefGoogle Scholar
- 6.Meyer, P.E., Kontos, K., Lafitte, F., Bontempi, G.: Information-theoretic inference of large transcriptional regulatory networks. EURASIP J. Bioinf. Syst. Biol. 2007, 8 (2007)CrossRefGoogle Scholar
- 7.Zhang, X., Zhao, X.M., He, K., Lu, L., Cao, Y., Liu, J., Hao, J.K., Liu, Z.P., Chen, L.: Inferring gene regulatory networks from gene expression data by path consistency algorithm based on conditional mutual information. Bioinformatics 28(1), 98–104 (2011)CrossRefGoogle Scholar
- 8.Zhang, X., Zhao, J., Hao, J.K., Zhao, X.M., Chen, L.: Conditional mutual inclusive information enables accurate quantification of associations in gene regulatory networks. Nucleic Acids Res. 43(5), e31 (2014)CrossRefGoogle Scholar
- 9.Zhao, J., Zhou, Y., Zhang, X., Chen, L.: Part mutual information for quantifying direct associations in networks. Proc. Nat. Acad. Sci. 113(18), 5130–5135 (2016)CrossRefGoogle Scholar
- 10.Zhou, X., Wang, X., Pal, R., Ivanov, I., Bittner, M., Dougherty, E.R.: A Bayesian connectivity-based approach to constructing probabilistic gene regulatory networks. Bioinformatics 20(17), 2918–2927 (2004)CrossRefGoogle Scholar
- 11.Werhli, A.V., Husmeier, D.: Reconstructing gene regulatory networks with Bayesian networks by combining expression data with multiple sources of prior knowledge. Stat. Appl. Genet. Mol. Biol. 6(1) (2007)Google Scholar
- 12.Shermin, A., Orgun, M.A.: Using dynamic Bayesian networks to infer gene regulatory networks from expression profiles. In: ACM Symposium on Applied Computing, pp. 799–803 (2009)Google Scholar
- 13.Li, Y., Chen, H., Zheng, J., Ngom, A.: The max-min high-order dynamic Bayesian network for learning gene regulatory networks with time-delayed regulations. IEEE/ACM Trans. Comput. Biol. Bioinform. (TCBB) 13(4), 792–803 (2016)CrossRefGoogle Scholar
- 14.Zheng, J., Chaturvedi, I., Rajapakse, J.C.: Integration of epigenetic data in Bayesian network modeling of gene regulatory network. In: Loog, M., Wessels, L., Reinders, M.J.T., de Ridder, D. (eds.) PRIB 2011. LNCS, vol. 7036, pp. 87–96. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24855-9_8CrossRefGoogle Scholar
- 15.Liu, F., Zhang, S.W., Guo, W.F., Wei, Z.G., Chen, L.: Inference of gene regulatory network based on local bayesian networks. PLoS Comput. Biol. 12(8), e1005024 (2016)CrossRefGoogle Scholar
- 16.Omranian, N., Eloundou-Mbebi, J.M., Mueller-Roeber, B., Nikoloski, Z.: Gene regulatory network inference using fused LASSO on multiple data sets. Sci. Rep. 6, 20533 (2016)CrossRefGoogle Scholar
- 17.Haury, A.C., Mordelet, F., Vera-Licona, P., Vert, J.P.: TIGRESS: trustful inference of gene regulation using stability selection. BMC Syst. Biol. 6(1), 145 (2012)CrossRefGoogle Scholar
- 18.Singh, N., Vidyasagar, M.: bLARS: an algorithm to infer gene regulatory networks. IEEE/ACM Trans. Comput. Biol. Bioinf. 13(2), 301–314 (2016)CrossRefGoogle Scholar
- 19.Guo, S., Jiang, Q., Chen, L., Guo, D.: Gene regulatory network inference using PLS-based methods. BMC Bioinform. 17(1), 545 (2016)CrossRefGoogle Scholar
- 20.Yao, S., Yoo, S., Yu, D.: Prior knowledge driven Granger causality analysis on gene regulatory network discovery. BMC Bioinform. 16(1), 273 (2015)CrossRefGoogle Scholar
- 21.Li, M., Zheng, R., Li, Y., Wu, F.X., Wang, J.: MGT-SM: a method for constructing cellular signal transduction networks. IEEE/ACM Trans. Comput. Biol. Bioinform. (2017)Google Scholar
- 22.Irrthum, A., Wehenkel, L., Geurts, P., et al.: Inferring regulatory networks from expression data using tree-based methods. PLoS One 5(9), e12776 (2010)CrossRefGoogle Scholar
- 23.Ruyssinck, J., Geurts, P., Dhaene, T., Demeester, P., Saeys, Y., et al.: NIMEFI: gene regulatory network inference using multiple ensemble feature importance algorithms. PLoS One 9(3), e92709 (2014)CrossRefGoogle Scholar
- 24.Huynh-Thu, V.A., Sanguinetti, G.: Combining tree-based and dynamical systems for the inference of gene regulatory networks. Bioinformatics 31(10), 1614–1622 (2015)CrossRefGoogle Scholar
- 25.Greenfield, A., Madar, A., Ostrer, H., Bonneau, R.: DREAM4: combining genetic and dynamic information to identify biological networks and dynamical models. PLoS One 5(10), e13397 (2010)CrossRefGoogle Scholar
- 26.Marbach, D., Costello, J.C., Küffner, R., Vega, N.M., Prill, R.J., Camacho, D.M., Allison, K.R., Aderhold, A., Bonneau, R., Chen, Y., et al.: Wisdom of crowds for robust gene network inference. Nat. Methods 9(8), 796 (2012)CrossRefGoogle Scholar
- 27.Schaffter, T., Marbach, D., Floreano, D.: GeneNetWeaver: in silico benchmark generation and performance profiling of network inference methods. Bioinformatics 27(16), 2263–2270 (2011)CrossRefGoogle Scholar
- 28.Friedman, J.H.: Multivariate adaptive regression splines. Ann. Stat. 1–67 (1991)Google Scholar
- 29.Xu, Q.S., Massart, D., Liang, Y.Z., Fang, K.T.: Two-step multivariate adaptive regression splines for modeling a quantitative relationship between gas chromatography retention indices and molecular descriptors. J. Chromatogr. A 998(1–2), 155–167 (2003)CrossRefGoogle Scholar
- 30.Weber, G.W., Batmaz, İ., Köksal, G., Taylan, P., Yerlikaya-Özkurt, F.: CMARS: a new contribution to nonparametric regression with multivariate adaptive regression splines supported by continuous optimization. Inverse Prob. Sci. Eng. 20(3), 371–400 (2012)MathSciNetCrossRefGoogle Scholar
- 31.Friedman, J., Hastie, T., Tibshirani, R.: The Elements of Statistical Learning. Springer Series in Statistics, vol. 1. Springer, New York (2001). https://doi.org/10.1007/978-0-387-21606-5CrossRefzbMATHGoogle Scholar
- 32.Friedman, J.H.: Estimating functions of mixed ordinal and categorical variables using adaptive splines. Technical report, Stanford Univ., CA, Lab for Computational Statistics (1991)Google Scholar
- 33.Zhou, Y., Leung, H.: Predicting object-oriented software maintainability using multivariate adaptive regression splines. J. Syst. Softw. 80(8), 1349–1361 (2007)CrossRefGoogle Scholar
- 34.Friedman, J.H.: Fast MARS. Computational Statistics Laboratory of Stanford University (1993)Google Scholar
- 35.Yu, H., Luscombe, N.M., Qian, J., Gerstein, M.: Genomic analysis of gene expression relationships in transcriptional regulatory networks. Trends Genet. 19(8), 422–427 (2003)CrossRefGoogle Scholar
- 36.Margolin, A.A., Wang, K., Lim, W.K., Kustagi, M., Nemenman, I., Califano, A.: Reverse engineering cellular networks. Nat. Protoc. 1(2), 662 (2006)CrossRefGoogle Scholar