Advertisement

The Benefits of Using Experimental Exploration for Cloud Migration Analysis and Planning

  • Frank Fowley
  • Divyaa Manimaran Elango
  • Hany Magar
  • Claus Pahl
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 864)

Abstract

Migration software systems to the cloud causes challenges. This applies especially for companies that do not have sufficient cloud expertise. In many of these companies there is a clear ideas about expected benefits. There is also an awareness of some potential problems. However, this is often not sufficient to assess the risks before starting on a full cloud migration of a legacy system.

Technical and conceptual analyses can only help to identify risks in the migration process with from a cost and a quality perspective to a limited extent. So, we investigate here the suitability of feasibility studies with a focus on experimental exploration. These studies would generally only cost 5% of the overall costs of a migration project, but can strongly support a reliable risk assessment. These can determine how much of the expectations and intentions can achieved in a cloud deployment. The cost of the migration, but also the cost of operating an IT system in the cloud can be estimated in the context of quality expectations. Using a feasibility study with an experimental core based on a partial prototype delivers much more reliable figures regarding configurations, quality-of-service and costing than a theoretical analysis could deliver.

We will embed our feasibility study approach into a pattern-based migration method. We report on a number of case studies to validate the expected benefits of feasibility-driven migration.

Keywords

Cloud migration Experiment Prototyping Migration patterns Cloud architecture Cloud cost model Performance Scalability 

Notes

Acknowledgements

This work was partly supported by IC4 (the Irish Centre for Cloud Computing and Commerce), funded by EI and IDA.

References

  1. 1.
    Fowley, F., Elango, D.M., Magar, H., Pahl, C.: The role of experimental exploration in cloud migration for SMEs. In: International Conference on Cloud Computing and Services Science, CLOSER 2017 (2017)Google Scholar
  2. 2.
    Jamshidi, P., Ahmad, A., Pahl, C.: Cloud migration research: a systematic review. IEEE Trans. Cloud Comput. 1(2), 142–157 (2013)CrossRefGoogle Scholar
  3. 3.
    Jamshidi, P., Pahl, C., Mendonca, N.C.: Pattern-based multi-cloud architecture migration. Softw. Pract. Experience 47(9), 1159–1184 (2016)CrossRefGoogle Scholar
  4. 4.
    Son, J.: Automated Decision System for Efficient Resource Selection and Allocation in Inter-Clouds. The University of Melbourne (2013)Google Scholar
  5. 5.
    Arshad, S., Ullah, S., Khan, S.A., Awan, M.D. and Khayal, M.: A survey of Cloud computing variable pricing models. In: Evaluation of Novel Approaches to Software Engineering (2015)Google Scholar
  6. 6.
    Jamshidi, P., Pahl, C., Chinenyeze, S., Liu, X.: Cloud migration patterns: a multi-cloud service architecture perspective. In: Toumani, F., Pernici, B., Grigori, D., Benslimane, D., Mendling, J., Ben Hadj-Alouane, N., Blake, B., Perrin, O., Saleh, I., Bhiri, S. (eds.) ICSOC 2014. LNCS, vol. 8954, pp. 6–19. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-22885-3_2CrossRefGoogle Scholar
  7. 7.
    Xiong, H., Fowley, F., Pahl, C., Moran, N.: Scalable architectures for platform-as-a-service clouds: performance and cost analysis. In: Avgeriou, P., Zdun, U. (eds.) ECSA 2014. LNCS, vol. 8627, pp. 226–233. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-09970-5_21CrossRefGoogle Scholar
  8. 8.
    Pahl, C., Xiong, H.: Migration to PaaS clouds - migration process and architectural concerns. In: MESOCA Symposium (2013)Google Scholar
  9. 9.
    Pahl, C., Xiong, H., Walshe, R.: A comparison of on-premise to cloud migration approaches. In: Lau, K.-K., Lamersdorf, W., Pimentel, E. (eds.) ESOCC 2013. LNCS, vol. 8135, pp. 212–226. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-40651-5_18CrossRefGoogle Scholar
  10. 10.
    Al-Roomi, M., Al-Ebrahim, A., Buqrais, S., Ahmad, I.: Cloud computing pricing models: a survey. Int. J. Grid Distr. Comp. 6(5), 93–106 (2013).  https://doi.org/10.14257/ijgdc.2013.6.5.09CrossRefGoogle Scholar
  11. 11.
    Wang, W., Zhang, P., Lan, L., Aggarwal, V.: Datacenter net profit optimization with deadline dependent pricing. In: Conference on Information Sciences and Systems (2012)Google Scholar
  12. 12.
    Giardino, C., Bajwa, S.S., Wang, X., Abrahamsson, P.: Key challenges in early-stage software startups. In: Lassenius, C., Dingsøyr, T., Paasivaara, M. (eds.) XP 2015. LNBIP, vol. 212, pp. 52–63. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-18612-2_5CrossRefGoogle Scholar
  13. 13.
    Li, H., Zhong, L., Liu, J., Li, B., Xu, K.: Cost-effective partial migration of VoD services to content clouds. In: Cloud Computing (2011)Google Scholar
  14. 14.
    Pahl, C., Jamshidi, P., Weyns, D.: Cloud architecture continuity: change models and change rules for sustainable cloud software architectures. In: Proceedings IEEE 4th International Conference on Cloud Computing, pp. 203–210 (2011).  https://doi.org/10.1109/CLOUD.2011.41
  15. 15.
    Koziolek, H.: Sustainability evaluation of software architectures: a systematic review. In: Joint ACM Symposium on Quality of Software Architectures QoSA and Architecting Critical Systems ISARCS, pp. 3–12 (2011)Google Scholar
  16. 16.
    Pahl, C.: Layered ontological modelling for web service-oriented model-driven architecture. In: Hartman, A., Kreische, D. (eds.) ECMDA-FA 2005. LNCS, vol. 3748, pp. 88–102. Springer, Heidelberg (2005).  https://doi.org/10.1007/11581741_8CrossRefGoogle Scholar
  17. 17.
    Chappell, D.: Cloud Computing White Papers (2016). http://www.davidchappell.com/writing/white_papers.php
  18. 18.
    Gholami, M.F., Daneshgar, F., Rabhi, F.: Cloud migration methodologies: preliminary findings. In: CloudWays Workshop (2016)Google Scholar
  19. 19.
    Pahl, C., Lee, B.: Containers and clusters for edge cloud architectures - a technology review. In: International Conference on Future Internet of Things and Cloud (2015)Google Scholar
  20. 20.
    Affetti, L., Bresciani, G., Guinea, S.: aDock: a cloud infrastructure experimentation environment based on open stack and docker. In: International Conference Cloud Computing (2015)Google Scholar
  21. 21.
    Pahl, C. Jamshidi, P., Zimmermann, O.: Architectural principles for cloud software. ACM Trans. Internet Technol. 18 (2017). Article no. 17CrossRefGoogle Scholar
  22. 22.
    Fowley, F., Pahl, C., Zhang, L.: A comparison framework and review of service brokerage solutions for cloud architectures. In: Lomuscio, A.R., Nepal, S., Patrizi, F., Benatallah, B., Brandić, I. (eds.) ICSOC 2013. LNCS, vol. 8377, pp. 137–149. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-06859-6_13CrossRefGoogle Scholar
  23. 23.
    Fowley, F., Pahl, C., Jamshidi, P., Fang, D., Liu, X.: A Classification and Comparison Framework for Cloud Service Brokerage Architectures. IEEE Trans. Cloud Comput. 6(2), 358–371 (2018).  https://doi.org/10.1109/TCC.2016.2537333CrossRefGoogle Scholar
  24. 24.
    Taibi, D., Lenarduzzi, V., Pahl, C.: Processes, motivations and issues for migrating to microservices architectures: an empirical investigation. IEEE Cloud Comput. 4(5), 22–32 (2017)CrossRefGoogle Scholar
  25. 25.
    Pahl, C., Giesecke, S., Hasselbring, W.: Ontology-based modelling of architectural styles. Inf. Softw. Technol. (IST) 51(12), 1739–1749 (2009)CrossRefGoogle Scholar
  26. 26.
    Jamshidi, P., Pahl, C., Mendonca, N.C.: Pattern-based multi-cloud architecture migration. Softw. Pract. Experience 47(9), 1159–1184 (2017)CrossRefGoogle Scholar
  27. 27.
    Pahl, C., Brogi, A., Soldani, J., Jamshidi, P.: Cloud container technologies: a state-of-the-art review. IEEE Trans. Cloud Comput. (2017). https://ieeexplore.ieee.org/document/7922500/
  28. 28.
    Heinrich, R., van Hoorn, A., Knoche, H., Li, F., Lwakatare, L.E., Pahl, C., Schulte, S., Wettinger, J.: Performance engineering for microservices: research challenges and directions. In: Proceedings of the 8th ACM/SPEC on International Conference on Performance Engineering Companion (2017)Google Scholar
  29. 29.
    Javed, M., Abgaz, Y.M., Pahl, C.: Ontology change management and identification of change patterns. J. Data Semant. 2(2–3), 119–143 (2013)CrossRefGoogle Scholar
  30. 30.
    Pahl, C., Jamshidi, P.: Microservices: a systematic mapping study. In: Proceedings CLOSER Conference, pp. 137–146 (2016)Google Scholar
  31. 31.
    Aderaldo, C.M., Mendonca, N.C., Pahl, C., Jamshidi, P.: Benchmark requirements for microservices architecture research. In: Proceedings of the 1st International Workshop on Establishing the Community-Wide Infrastructure for Architecture-Based Software Engineering. IEEE (2017)Google Scholar
  32. 32.

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Frank Fowley
    • 1
  • Divyaa Manimaran Elango
    • 1
  • Hany Magar
    • 1
  • Claus Pahl
    • 2
  1. 1.IC4, Dublin City UniversityDublin 9Ireland
  2. 2.SwSE, Free University of Bozen-BolzanoBolzanoItaly

Personalised recommendations