A Flexible Semantic KPI Measurement System

  • Kyriakos KritikosEmail author
  • Dimitris Plexousakis
  • Robert Woitch
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 864)


Linked Data (LD) technology enables integrating information across disparate sources and can be exploited to perform inferencing for deriving added-value knowledge. As such, it can really support performing different kinds of analysis tasks over business process (BP) execution related information. When moving BPs in the cloud, giving rise to Business Process as a Service (BPaaS) concept, the first main challenge is to collect and link, based on a certain structure, information originating from different systems. To this end, two main ontologies are proposed in this paper to enable this structuring: a KPI and a Dependency one. Then, via exploiting these well-connected ontologies, an innovative Key Performance Indicator (KPI) analysis system is built that offers two main analysis capabilities: KPI assessment and drill-down, where the second can enable finding root causes of KPI violations. This system advances the state-of-the-art by exhibiting the capability, through the LD usage, of the flexible construction and assessment of any KPI kind, allowing experts to better explore the possible KPI space.



This research has received funding from the European Community’s Framework Programme for Research and Innovation HORIZON 2020 (ICT-07-2014) under grant agreement number 644690 (CloudSocket).


  1. 1.
    Karagiannis, D.: BPMS: Business Process Management Systems. SIGOIS Bull. 16, 10–13 (1995)CrossRefGoogle Scholar
  2. 2.
    Caplan, R.S., Norton, D.P.: The balanced scorecard measures that drive performance. Harvard Bus. Rev. 70, 281–308 (1992)Google Scholar
  3. 3.
    Chowdhary, P., Bhaskaran, K., Caswell, N.S., Chang, H., Chao, T., Chen, S.K., Dikun, M., Lei, H., Jeng, J.J., Kapoor, S., Lang, C.A., Mihaila, G., Stanoi, I., Zeng, L.: Model driven development for business performance management. IBM Syst. J. 45, 587–605 (2006)CrossRefGoogle Scholar
  4. 4.
    Castellanos, M., Casati, F., Shan, M.C., Dayal, U.: IBOM: a platform for intelligent business operation management. In: ICDE, pp. 1084–1095. IEEE Computer Society, Washington, DC (2005)Google Scholar
  5. 5.
    Woitsch, R., Albayrak, M., Köhn, H., Utz, W., Ferrer, A.J., Iranzo, J., Leonforte, A., Gallo, A., Mihnea, V., Pacurar, R., Avasilcai, C., Arama, G., Boca, R., Griesinger, F., Seybold, D., Domaschka, J., Kritikos, K., Plexousakis, D.: D4.1 - First CloudSocket Architecture. CloudSocket European Project (2015)Google Scholar
  6. 6.
    Kritikos, K., Plexousakis, D.: Semantic QoS metric matching. In: ECOWS, pp. 265–274. IEEE Computer Society (2006)Google Scholar
  7. 7.
    Kritikos, K., Plexousakis, D., Woitsch, R.: Towards semantic KPI measurement. In: CLOSER, pp. 63–74. SciTePress, Porto (2017)Google Scholar
  8. 8.
    List, B., Korherr, B.: An evaluation of conceptual business process modelling languages. In: SAC, pp. 1532–1539. ACM, Dijon (2006)Google Scholar
  9. 9.
    Wetzstein, B., Karastoyanova, D., Leymann, F.: Towards management of SLA-aware business processes based on key performance indicators. In: BPMDS, Montpellier, France (2008)Google Scholar
  10. 10.
    Motta, G., Pignatelli, G., Florio, M.: Performing business process knowledge base. In: First International Workshop and Summer School on Service Science, Heraklion, Greece (2007)Google Scholar
  11. 11.
    Pierantonio, A., Rosa, G., Silingas, D., Thönssen, B., Woitsch, R.: Metamodeling architectures for business processes in organizations. In: Proceedings of the Projects Showcase at STAF, L’Aquila, Italy. CEUR (2015)Google Scholar
  12. 12.
    Friedenstab, J.P., Janiesch, C., Matzner, M., Muller, O.: Extending BPMN for business activity monitoring. In: HICSS, pp. 4158–4167. IEEE Computer Society (2012)Google Scholar
  13. 13.
    Frank, U., Heise, D., Kattenstroth, H., Schauer, H.: Designing and utilising business indicator systems within enterprise models: outline of a method. In: MobIS: Modellierung zwischen SOA und Compliance Management, Saarbröcken, Germany (2008)Google Scholar
  14. 14.
    González, O., Casallas, R., Deridder, D.: MMC-BPM: a domain-specific language for business processes analysis. In: Abramowicz, W. (ed.) BIS 2009. LNBIP, vol. 21, pp. 157–168. Springer, Heidelberg (2009). Scholar
  15. 15.
    del Río-Ortega, A., Resinas, M., Durán, A., Ruiz-Cortés, A.: Using templates and linguistic patterns to define process performance indicators. Enterp. Inf. Syst. 10, 159–192 (2016)CrossRefGoogle Scholar
  16. 16.
    Costello, C., Malloy, O.: Building a process performance model for business activity monitoring. In: Wojtkowski, W., Wojtkowski, G., Lang, M., Conboy, K., Barry, C. (eds.) Information Systems Development - Challenges in Practice, Theory, and Education, pp. 237–248. Springer, Boston (2008). Scholar
  17. 17.
    Liu, R., Nigam, A., Jeng, J., Shieh, C., Wu, F.Y.: Integrated modeling of performance monitoring with business artifacts. In: ICEBE, pp. 64–71. IEEE Computer Society, Shanghai (2010)Google Scholar
  18. 18.
    Seedorf, S., Schader, M.: Towards an enterprise software component ontology. In: AMCIS. Association for Information Systems (2011)Google Scholar
  19. 19.
    Gruschke, B.: Integrated event management: event correlation using dependency graphs. In: DSOM (1998)Google Scholar
  20. 20.
    Cui, Y., Nahrstedt, K.: QoS-aware dependency management for component-based systems. In: HPDC, p. 127. IEEE Computer Society (2001)Google Scholar
  21. 21.
    Hasselmeyer, P.: Managing dynamic service dependencies. In: DSOM, pp. 141–150. Inria, Nancy (2001)Google Scholar
  22. 22.
    Rossini, A., Kritikos, K., Nikolov, N., Domaschka, J., Griesinger, F., Seybold, D., Romero, D.: D2.1.3 - CloudML Implementation Documentation (Final version). Paasage project deliverable (2015)Google Scholar
  23. 23.
    Wetzstein, B., Leitner, P., Rosenberg, F., Brandic, I., Dustdar, S., Leymann, F.: Monitoring and analyzing influential factors of business process performance. In: EDOC, pp. 118–127. IEEE Press (2009)Google Scholar
  24. 24.
    Wetzstein, B., Ma, Z., Leymann, F.: Towards measuring key performance indicators of semantic business processes. In: Abramowicz, W., Fensel, D. (eds.) BIS 2008. LNBIP, vol. 7, pp. 227–238. Springer, Heidelberg (2008). Scholar
  25. 25.
    Diamantini, C., Potena, D., Storti, E., Zhang, H.: An ontology-based data exploration tool for key performance indicators. In: Meersman, R., et al. (eds.) OTM 2014. LNCS, vol. 8841, pp. 727–744. Springer, Heidelberg (2014). Scholar
  26. 26.
    Kritikos, K., Pernici, B., Plebani, P., Cappiello, C., Comuzzi, M., Benbernou, S., Brandic, I., Kertész, A., Parkin, M., Carro, M.: A survey on service quality description. ACM Comput. Surv. 46, 1 (2013)CrossRefGoogle Scholar
  27. 27.
    de Medeiros, A.K.A., et al.: An outlook on semantic business process mining and monitoring. In: Meersman, R., Tari, Z., Herrero, P. (eds.) OTM 2007. LNCS, vol. 4806, pp. 1244–1255. Springer, Heidelberg (2007). Scholar
  28. 28.
    Kritikos, K., Magoutis, K., Plexousakis, D.: Towards knowledge-based assisted IaaS selection. In: CloudCom. IEEE Computer Society, Luxembourg (2016)Google Scholar
  29. 29.
    Zeginis, C., Kritikos, K., Plexousakis, D.: Event pattern discovery in multi-cloud service-based applications. Int. J. Syst. Serv. Oriented Eng. 5, 78–103 (2015)CrossRefGoogle Scholar
  30. 30.
    Kritikos, K., Plexousakis, D.: Semantic SLAs for services with Q-SLA. In: ICWS, pp. 686–689. IEEE Computer Society, San Francisco (2016)Google Scholar
  31. 31.
    Kritikos, K., Zegkinis, C., Seybold, D., Griesinger, F.: D3.6 - BPaaS Monitoring and Evaluation Prototypes. CloudSocket European Project (2017)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Kyriakos Kritikos
    • 1
    Email author
  • Dimitris Plexousakis
    • 1
  • Robert Woitch
    • 2
  1. 1.ICS-FORTHHeraklionGreece
  2. 2.BOCViennaAustria

Personalised recommendations