Advertisement

Utility of OCT for Detection or Monitoring of Glaucoma in Myopic Eyes

  • Atilla Bayer
  • Kouros Nouri-Mahdavi
Chapter

Abstract

Evaluation of glaucomatous structural changes in myopic eyes is difficult due to the considerable morphological variations in the optic nerve head (ONH) and other posterior segment structures of the eye. The ONH can frequently mimic glaucoma in healthy myopic eyes. Optical coherence tomography (OCT) allows in vivo quantitative analysis of the ONH, retinal nerve fiber layer (RNFL), and macular area but interpreting the findings in myopic and especially highly myopic eyes, may be challenging due to the anatomical changes associated with enlargement of the eye; this is complicated by the absence of normative databases tailored to myopic individuals. Still, OCT can be used as a complementary test to clinical exam and visual field testing for detection of glaucoma as well as for progression analysis. Clinicians should be familiar with the practical aspects and cognizant of the pitfalls of OCT imaging in patients with myopia with or without glaucoma.

Keywords

Glaucoma imaging Myopic glaucoma Optical coherence tomography OCT in myopia 

References

  1. 1.
    Shim SH, Sung KR, Kim JM, Kim HT, Jeong J, Kim CY, Lee MY, Park KH. Korean ophthalmological society. The prevalence of open-angle glaucoma by age in myopia: the Korea National Health and nutrition examination survey. Curr Eye Res. 2017;42:65–71.CrossRefGoogle Scholar
  2. 2.
    Chon B, Qiu M, Lin SC. Myopia and glaucoma in the south Korean population. Invest Ophthalmol Vis Sci. 2013;54:6570–7.CrossRefGoogle Scholar
  3. 3.
    Mitchell P, Hourihan F, Sandbach J, Wang JJ. The relationship between glaucoma and myopia: the blue mountains eye study. Ophthalmology. 1999;106:2010–5.CrossRefGoogle Scholar
  4. 4.
    Xu L, Li Y, Wang S, Wang Y, Wang Y, Jonas JB. Characteristics of highly myopic eyes: the Beijing eye study. Ophthalmology. 2007;114:121–6.CrossRefGoogle Scholar
  5. 5.
    Melo GB, Libera RD, Barbosa AS, Pereira LM, Doi LM, Melo LA Jr. Comparison of optic disk and retinal nerve fiber layer thickness in nonglaucomatous and glaucomatous patients with high myopia. Am J Ophthalmol. 2006;142:858–60.CrossRefGoogle Scholar
  6. 6.
    You QS, Peng XY, Xu L, Chen CX, Wang YX, Jonas JB. Myopic maculopathy imaged by optical coherence tomography: the Beijing eye study. Ophthalmology. 2014;121:220–4.CrossRefGoogle Scholar
  7. 7.
    Leung CK, Mohamed S, Leung KS, Cheung CY, Chan SL, Cheng DK, Lee AK, Leung GY, Rao SK, Lam DS. Retinal nerve fiber layer measurements in myopia: an optical coherence tomography study. Invest Ophthalmol Vis Sci. 2006;47:5171–6.CrossRefGoogle Scholar
  8. 8.
    Wong YZ, Lam AK. The roles of cornea and axial length in corneal hysteresis among emmetropes and high myopes: a pilot study. Curr Eye Res. 2015;40:282–9.CrossRefGoogle Scholar
  9. 9.
    Jiang Z, Shen M, Mao G, Chen D, Wang J, Qu J, Lu F. Association between corneal biomechanical properties and myopia in Chinese subjects. Eye (Lond). 2011;25:1083–9.CrossRefGoogle Scholar
  10. 10.
    Shen M, Fan F, Xue A, Wang J, Zhou X, Lu F. Biomechanical properties of the cornea in high myopia. Vis Res. 2008;48:2167–71.CrossRefGoogle Scholar
  11. 11.
    Kim TW, Kim M, Weinreb RN, Woo SJ, Park KH, Hwang JM. Optic disc change with incipient myopia of childhood. Ophthalmology. 2012;119:21–6.CrossRefGoogle Scholar
  12. 12.
    Jonas JB, Gusek GC, Naumann GO. Optic disk morphometry in high myopia. Graefes Arch Clin Exp Ophthalmol. 1988;226:587–90.CrossRefGoogle Scholar
  13. 13.
    Witmer MT, Margo CE, Drucker M. Tilted optic disks. Surv Ophthalmol. 2010;55:403–28.CrossRefGoogle Scholar
  14. 14.
    Jonas JB, Xu L. Histological changes of high axial myopia. Eye (Lond). 2014;28:113–7.CrossRefGoogle Scholar
  15. 15.
    Morgan WH, Yu DY, Alder VA, Cringle SJ, Cooper RL, House PH, Constable IJ. The correlation between cerebrospinal fluid pressure and retrolaminar tissue pressure. Invest Ophthalmol Vis Sci. 1998;39:1419–28.PubMedGoogle Scholar
  16. 16.
    Tezel G, Trinkaus K, Wax MB. Alterations in the morphology of lamina cribrosa pores in glaucomatous eyes. Br J Ophthalmol. 2004;88:251–6.CrossRefGoogle Scholar
  17. 17.
    Tay E, Seah SK, Chan SP, Lim AT, Chew SJ, Foster PJ, Aung T. Optic disk ovality as an index of tilt and its relationship to myopia and perimetry. Am J Ophthalmol. 2005;139:247–52.CrossRefGoogle Scholar
  18. 18.
    Jonas JB. Optic disk size correlated with refractive error. Am J Ophthalmol. 2005;139:346–8.CrossRefGoogle Scholar
  19. 19.
    Jonas JB, Nguyen XN, Gusek GC, Naumann GO. Parapapillary chorioretinal atrophy in normal and glaucoma eyes. I. Morphometric data. Invest Ophthalmol Vis Sci. 1989;30:908–18.PubMedGoogle Scholar
  20. 20.
    Jonas JB, Budde WM, Panda-Jones S. Ophthalmoscopic evaluation of the optic nerve head. Surv Ophthalmol. 1999;43:293–320.CrossRefGoogle Scholar
  21. 21.
    Jonas JB, Jonas SB, Jonas RA, Holbach L, Dai Y, Sun X, Panda-Jonas S. Parapapillary atrophy: histological gamma zone and delta zone. PLoS One. 2012;7(10):e47237.CrossRefGoogle Scholar
  22. 22.
    Dichtl A, Jonas JB, Naumann GO. Histomorphometry of the optic disc in highly myopic eyes with absolute secondary angle closure glaucoma. Br J Ophthalmol. 1998;82:286–9.CrossRefGoogle Scholar
  23. 23.
    Fantes FE, Anderson DR. Clinical histologic correlation of human peripapillary anatomy. Ophthalmology. 1989;96:20–5.CrossRefGoogle Scholar
  24. 24.
    Dai Y, Jonas JB, Huang H, Wang M, Sun X. Microstructure of parapapillary atrophy: beta zone and gamma zone. Invest Ophthalmol Vis Sci. 2013;54:2013–8.CrossRefGoogle Scholar
  25. 25.
    Ng DS, Cheung CY, Luk FO, Mohamed S, Brelen ME, Yam JC, Tsang CW, Lai TY. Advances of optical coherence tomography in myopia and pathologic myopia. Eye (Lond). 2016;30:901–16.CrossRefGoogle Scholar
  26. 26.
    Hosseini H, Nassiri N, Azarbod P, Giaconi J, Chou T, Caprioli J, Nouri-Mahdavi K. Measurement of the optic disc vertical tilt angle with spectral-domain optical coherence tomography and influencing factors. Am J Ophthalmol. 2013;156:737–44.CrossRefGoogle Scholar
  27. 27.
    Kimura Y, Akagi T, Hangai M, Takayama K, Hasegawa T, Suda K, Yoshikawa M, Yamada H, Nakanishi H, Unoki N, Ikeda HO, Yoshimura N. Lamina cribrosa defects and optic disc morphology in primary open angle glaucoma with high myopia. PLoS One. 2014;9(12):e115313.  https://doi.org/10.1371/journal.pone.0115313. eCollection 2014CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Kang SH, Hong SW, Im SK, Lee SH, Ahn MD. Effect of myopia on the thickness of the retinal nerve fiber layer measured by cirrus HD optical coherence tomography. Invest Ophthalmol Vis Sci. 2010;51:4075–83.CrossRefGoogle Scholar
  29. 29.
    Lee KH, Kim CY, Kim NR. Variations of retinal nerve fiber layer thickness and ganglion cell-inner plexiform layer thickness according to the torsion direction of optic disc. Invest Ophthalmol Vis Sci. 2014;55:1048–55.CrossRefGoogle Scholar
  30. 30.
    Bae SH, Kang SH, Feng CS, Park J, Jeong JH, Yi K. Influence of myopia on size of optic nerve head and retinal nerve fiber layer thickness measured by spectral domain optical coherence tomography. Korean J Ophthalmol. 2016;30:335–43.CrossRefGoogle Scholar
  31. 31.
    Budenz DL, Anderson DR, Varma R, Schuman J, Cantor L, Savell J, Greenfield DS, Patella VM, Quigley HA, Tielsch J. Determinants of normal retinal nerve fiber layer thickness measured by stratus OCT. Ophthalmology. 2007;114:1046–52.CrossRefGoogle Scholar
  32. 32.
    Nowroozizadeh S, Cirineo N, Amini N, Knipping S, Chang T, Chou T, Caprioli J, Nouri-Mahdavi K. Influence of correction of ocular magnification on spectral-domain OCT retinal nerve fiber layer measurement variability and performance. Invest Ophthalmol Vis Sci. 2014;55:3439–46.CrossRefGoogle Scholar
  33. 33.
    Savini G, Barboni P, Parisi V, Carbonelli M. The influence of axial length on retinal nerve fibre layer thickness and optic-disc size measurements by spectral-domain OCT. Br J Ophthalmol. 2012;96:57–61.CrossRefGoogle Scholar
  34. 34.
    Seol BR, Kim DM, Park KH, Jeoung JW. Assessment of optical coherence tomography color probability codes in myopic glaucoma eyes after applying a myopic normative database. Am J Ophthalmol. 2017;183:147–55.CrossRefGoogle Scholar
  35. 35.
    Zhang C, Tatham AJ, Weinreb RN, Zangwill LM, Yang Z, Zhang JZ, Medeiros FA. Relationship between ganglion cell layer thickness and estimated retinal ganglion cell counts in the glaucomatous macula. Ophthalmology. 2014;121:2371–9.CrossRefGoogle Scholar
  36. 36.
    Shoji T, Sato H, Ishida M, Takeuchi M, Chihara E. Assessment of glaucomatous changes in subjects with high myopia using spectral domain optical coherence tomography. Invest Ophthalmol Vis Sci. 2011;52:1098–102.CrossRefGoogle Scholar
  37. 37.
    Kim NR, Lee ES, Seong GJ, Kang SY, Kim JH, Hong S, Kim CY. Comparing the ganglion cell complex and retinal nerve fibre layer measurements by Fourier domain OCT to detect glaucoma in high myopia. Br J Ophthalmol. 2011;95:1115–21.CrossRefGoogle Scholar
  38. 38.
    Akashi A, Kanamori A, Ueda K, Inoue Y, Yamada Y, Nakamura M. The ability of SD-OCT to differentiate early glaucoma with high myopia from highly myopic controls and nonhighly myopic controls. Invest Ophthalmol Vis Sci. 2015;56:6573–80.CrossRefGoogle Scholar
  39. 39.
    Seo S, Lee CE, Jeong JH, Park KH, Kim DM, Jeoung JW. Ganglion cell-inner plexiform layer and retinal nerve fiber layer thickness according to myopia and optic disc area: a quantitative and three-dimensional analysis. BMC Ophthalmol. 2017;17:22.  https://doi.org/10.1186/s12886-017-0419-1.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Atilla Bayer
    • 1
  • Kouros Nouri-Mahdavi
    • 2
  1. 1.Department of GlaucomaDünyagöz Eye HospitalAnkaraTurkey
  2. 2.Stein Eye InstituteUniversity of California Los AngelesLos AngelesUSA

Personalised recommendations