Advertisement

Lower Bounds

  • Stefan Hollands
  • Ko Sanders
Chapter
Part of the SpringerBriefs in Mathematical Physics book series (BRIEFSMAPHY, volume 34)

Abstract

In this chapter we derive some lower bounds for the relative entanglement entropy. We include lower bounds of area law type for ground states of suitable QFTs and some general lower bounds for generic states.

References

  1. 1.
    H. Narnhofer, Entanglement, split, and nuclearity in quantum field theory. Rep. Math. Phys. 50, 111 (2002)ADSCrossRefMathSciNetGoogle Scholar
  2. 2.
    S.J. Summers, R. Werner, Maximal violation of Bell’s inequalities for algebras of observables in tangent spacetime regions. Ann. Inst. H. Poincaré 49, 2 (1988)zbMATHMathSciNetGoogle Scholar
  3. 3.
    S.J. Summers, R. Werner, Maximal violation of Bell’s inequalities is generic in quantum field theory. Commun. Math. Phys. 110, 247–259 (1987)ADSCrossRefMathSciNetGoogle Scholar
  4. 4.
    R. Haag, Local Quantum Physics: Fields, Particles, Algebras (Springer, Berlin, 1992)CrossRefGoogle Scholar
  5. 5.
    J. Eisert, Private CommunicationGoogle Scholar
  6. 6.
    M. Christiandl, A. Winter, Squashed entanglement’—an additive entanglement measure. J. Math. Phys. 45, 829–840 (2004)ADSCrossRefMathSciNetGoogle Scholar
  7. 7.
    R. Verch, R.F. Werner, Distillability and positivity of partial transposes in general quantum field systems. Rev. Math. Phys. 17, 545 (2005)CrossRefMathSciNetGoogle Scholar
  8. 8.
    R.F. Werner, M.M. Wolf, Bound entangled Gaussian states. Phys. Rev. Lett. 86, 3658 (2001)ADSCrossRefGoogle Scholar
  9. 9.
    L.-M. Duan, G. Giedke, J.I. Cirac, P. Zoller, Inseparability criterion for continuous variable systems. Phys. Rev. Lett. 84, 2722 (2000)ADSCrossRefGoogle Scholar
  10. 10.
    R. Simon, Peres-Horodecki separability criterion for continuous variable systems. Phys. Rev. Lett. 84, 2726 (2000)ADSCrossRefGoogle Scholar
  11. 11.
    G. Giedke, L.-M. Duan, J.I. Cirac, P. Zoller, Distillability criterion for all bipartite Gaussian states. Quant. Inf. Comput. 1(3), 79–86 (2001)zbMATHMathSciNetGoogle Scholar
  12. 12.
    M. Horodecki, P. Horodecki, Reduction criterion of separability and limits for a class of distillation protocols. Phys. Rev. A 59, 4206 (1999)ADSCrossRefGoogle Scholar
  13. 13.
    J. Eisert, S. Scheel, M.B. Plenio, Distilling Gaussian states with Gaussian operations is impossible. Phys. Rev. Lett. 89, 13 (2002)zbMATHMathSciNetGoogle Scholar
  14. 14.
    R.V. Kadison, J.R. Ringrose, Fundamentals of the Theory of Operator Algebras (Academic Press, New York, I 1983, II 1986)Google Scholar
  15. 15.
    F. Hiai, M. Ohya, M. Tsukada, Sufficiency, KMS condition and relative entropy in von Neumann algebras. Pacific J. Math. 96, 99–109 (1981)CrossRefMathSciNetGoogle Scholar
  16. 16.
    K.M.R. Audenaert, J. Eisert, Continuity bounds on the quantum relative entropy. J. Math. Phys. 46, 102104 (2005)ADSCrossRefMathSciNetGoogle Scholar

Copyright information

© The Author(s), under exclusive licence to Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Institute for Theoretical PhysicsUniversity of LeipzigLeipzigGermany
  2. 2.School of Mathematical SciencesDublin City UniversityDublinIreland

Personalised recommendations