Advertisement

Upper Bounds for \(E_R\) in QFT

  • Stefan Hollands
  • Ko Sanders
Chapter
Part of the SpringerBriefs in Mathematical Physics book series (BRIEFSMAPHY, volume 34)

Abstract

In this chapter we derive some upper bounds on the relative entanglement entropy in quantum field theories, using nuclearity conditions such as the BW-nuclearity or modular nuclearity condition. We consider free fields, 2-dimensional integrable models with factorizing scattering-matrices and CFTs.

References

  1. 1.
    G. Lechner, K. Sanders, Modular nuclearity: a generally covariant perspective. Axioms 5, 5 (2016)CrossRefGoogle Scholar
  2. 2.
    K. Sanders, On the reeh-schlieder property in curved spacetime. Commun. Math. Phys. 288, 271–285 (2009)ADSCrossRefMathSciNetGoogle Scholar
  3. 3.
    D. Buchholz, C. D’Antoni, R. Longo, Nuclear maps and modular structures. 1. General properties. J. Funct. Anal. 88, 223 (1990)CrossRefMathSciNetGoogle Scholar
  4. 4.
    D. Buchholz, E.H. Wichmann, Causal independence and the energy level density of states in local quantum field theory. Commun. Math. Phys. 106, 321 (1986)ADSCrossRefMathSciNetGoogle Scholar
  5. 5.
    C. D’Antoni, S. Hollands, Nuclearity, local quasiequivalence and split property for Dirac quantum fields in curved space-time. Commun. Math. Phys. 261, 133 (2006)ADSCrossRefGoogle Scholar
  6. 6.
    K. Fredenhagen, K.H. Rehren, B. Schroer, Superselection sectors with braid group statistics and exchange algebras. Commun. Math. Phys. 125, 201–226 (1989)ADSCrossRefMathSciNetGoogle Scholar
  7. 7.
    K. Fredenhagen, A remark on the cluster theorem. Commun. Math. Phys. 97, 461–463 (1985)ADSCrossRefMathSciNetGoogle Scholar
  8. 8.
    A. Jaffe, High energy behavior in quantum field theory I. Strictly localizable fields. Rev. Phys. 158, 1454 (1967)CrossRefGoogle Scholar
  9. 9.
    A.E. Ingham, A note on fourier transforms. J. Lon. Math. Soc. S1–9, 29–32 (1934)CrossRefMathSciNetGoogle Scholar
  10. 10.
    C.J. Fewster, L.H. Ford, Probability distributions for quantum stress tensors measured in a finite time interval. Phys. Rev. D 92, 105008 (2015)ADSCrossRefMathSciNetGoogle Scholar
  11. 11.
    H.J. Borchers, R. Schumann, A Nuclearity condition for charged states. Lett. Math. Phys. 23, 65 (1991)ADSCrossRefMathSciNetGoogle Scholar
  12. 12.
    Ch. Jäkel, Cluster Estimates for Modular Structures, arXiv:hep-th/9804017
  13. 13.
    D. Buchholz, P. Jacobi, On the nuclearity condition for massless fields. Lett. Math. Phys. 13, 313 (1987)ADSCrossRefMathSciNetGoogle Scholar
  14. 14.
    S. Hollands, O. Islam, K. Sanders, Relative entanglement entropy for widely separated regions in curved spacetime. J. Math. Phys. 59, 062301 (2018)ADSCrossRefMathSciNetGoogle Scholar
  15. 15.
    R.M. Wald, Quantum field theory in curved space-time and black hole thermodynamics (Chicago University Press, Chicago, 1994)zbMATHGoogle Scholar
  16. 16.
    P. Gilkey, Invariance theory, the heat equation and the Atiyah-Singer Index Theorem (Publish or Perish, Washington, 1984)zbMATHGoogle Scholar
  17. 17.
    J.J. Bisognano, E.H. Wichmann, On the duality condition for quantum fields. J. Math. Phys. 17, 303 (1976)ADSCrossRefMathSciNetGoogle Scholar
  18. 18.
    D. Buchholz, G. Lechner, Modular nuclearity and localization. Ann. Henri Poincaré 5, 1065 (2004)ADSCrossRefMathSciNetGoogle Scholar
  19. 19.
    J.L. Cardy, O.A. Castro-Alvaredo, B. Doyon, Form factors of branch-point twist fields in quantum integrable models and entanglement entropy. J. Statist. Phys. 130, 129 (2008)ADSCrossRefMathSciNetGoogle Scholar
  20. 20.
    S. Alazzawi, G. Lechner, Inverse scattering and locality in integrable quantum field theories, arXiv:1608.02359 [math-ph]
  21. 21.
    G. Lechner, Construction of quantum field theories with factorizing S-matrices. Commun. Math. Phys. 277, 821 (2008)ADSCrossRefMathSciNetGoogle Scholar
  22. 22.
    M. Kardar, Statistical physics of particles (U Press, Cambridge, 2007)CrossRefGoogle Scholar
  23. 23.
    R. Brunetti, D. Guido, R. Longo, Modular structure and duality in conformal quantum field theory. Commun. Math. Phys. 156, 201 (1993)ADSCrossRefMathSciNetGoogle Scholar
  24. 24.
    G. Mack, All unitary ray representations of the conformal group SU(2,2) with positive energy. Commun. Math. Phys. 55, 1 (1977)ADSCrossRefMathSciNetGoogle Scholar
  25. 25.
    D. Buchholz, C. D’Antoni, R. Longo, Nuclearity and thermal states in conformal field theory. Commun. Math. Phys. 270, 267–293 (2007)ADSCrossRefMathSciNetGoogle Scholar
  26. 26.
    P.D. Hislop, R. Longo, Modular structure of the local algebras associated with the free massless scalar field theory. Commun. Math. Phys. 84, 71 (1982)ADSCrossRefMathSciNetGoogle Scholar
  27. 27.
    F. Hansen, The fast track to Löwner’s theorem. Lin. Alg. Appl. 438, 4557–4571 (2013)CrossRefGoogle Scholar
  28. 28.
    E. Nelson, Analytic vectors, Ann. Math. 70, 572–615 (1959); R. Goodman, Analytic and entire vectors for representations of Lie groups, Trans. Amer. Mat. Soc. 143, 55–76 (1969)Google Scholar
  29. 29.
    K. Fredenhagen, J. Hertel, Local algebras of observables and point-like localized fields. Commun. Math. Phys. 80, 555 (1981)ADSCrossRefGoogle Scholar
  30. 30.
    G. Mack, A. Salam, Finite component field representations of the conformal group. Ann. Phys. 53, 174 (1969)ADSCrossRefMathSciNetGoogle Scholar
  31. 31.
    H. Bostelmann, Phase space properties and the short distance structure in quantum field theory. J. Math. Phys. 4, 052301 (2005)ADSCrossRefMathSciNetGoogle Scholar
  32. 32.
    L. Hörmander, The analysis of linear partial differential operators I (Springer, Berlin, Heidelberg, 1990)zbMATHGoogle Scholar
  33. 33.
    R.M. Wald, General relativity (University of Chicago Press, Chicago, 1984)CrossRefGoogle Scholar
  34. 34.
    P. DiFrancesco, P. Mathieu, D. Senechal, Conformal field theory (Springer, New York, 1997)CrossRefGoogle Scholar
  35. 35.
    Y. Kawahigashi, R. Longo, M. Müger, Multi-Interval subfactors and modularity of representations in conformal field theory. Commun. Math. Phys. 219, 631 (2001)ADSCrossRefMathSciNetGoogle Scholar
  36. 36.
    P. Calabrese, J. Cardy, Entanglement entropy and conformal field theory. J. Phys. A 42, 504005 (2009)CrossRefMathSciNetGoogle Scholar
  37. 37.
    R. Longo, F. Xu, Relative Entropy in CFT, arXiv:1712.07283 [math.OA]
  38. 38.
    H. Casini, M. Huerta, Remarks on the entanglement entropy for disconnected regions. JHEP 0903, 048 (2009)ADSCrossRefMathSciNetGoogle Scholar
  39. 39.
    S. Doplicher, R. Haag, J.E. Roberts, Local observables and particle statistics. 1. Commun. Math. Phys. 23, 199 (1971)ADSCrossRefMathSciNetGoogle Scholar
  40. 40.
    S. Doplicher, R. Haag, J.E. Roberts, Local observables and particle statistics. 2. Commun. Math. Phys. 35, 49 (1974)ADSCrossRefMathSciNetGoogle Scholar
  41. 41.
    S. Doplicher, R. Longo, Standard and split inclusions of von Neumann algebras. Invent. Math. 75, 493 (1984)ADSCrossRefMathSciNetGoogle Scholar
  42. 42.
    R. Longo, Index of subfactors and statistics of quantum fields. I. Commun. Math. Phys. 126, 217 (1989)ADSCrossRefMathSciNetGoogle Scholar
  43. 43.
    R. Longo, Index of subfactors and statistics of quantum fields. 2: Correspondences, braid group statistics and Jones polynomial. Commun. Math. Phys. 130, 285 (1990)ADSCrossRefMathSciNetGoogle Scholar
  44. 44.
    R. Haag, Local quantum physics: Fields, particles, algebras (Springer, Berlin, 1992)CrossRefGoogle Scholar
  45. 45.
    K. Fredenhagen, Superselection sectors, Notes from lectures at Hamburg University (1994/1995)Google Scholar
  46. 46.
    H. Araki, Mathematical theory of quantum fields (Oxford Science Publications, 1993)Google Scholar
  47. 47.
    S. Doplicher, J.E. Roberts, Why there is a field algebra with a compact gauge group describing the superselection structure in particle physics. Commun. Math. Phys. 131, 51 (1990)ADSCrossRefMathSciNetGoogle Scholar
  48. 48.
    P. Caputa, M. Nozaki, T. Takayanagi, Entanglement of local operators in large-N conformal field theories. Prog. Theor. Exp. Phys. 2014, 093B06 (2014)CrossRefGoogle Scholar
  49. 49.
    M. Nozaki, T. Numasawa, T. Takayanagi, Quantum entanglement of local operators in conformal field theories. Phys. Rev. Lett. 112, 111602 (2014)ADSCrossRefGoogle Scholar
  50. 50.
    M. Pimsner, S. Popa, Entropy and index for subfactors. Ann. Sci. Ecole Norm. Sup. 19, 57 (1986)CrossRefMathSciNetGoogle Scholar
  51. 51.
    M. Ohya, D. Petz, Quantum entropy and its use, Theoretical and Mathematical Physics (Springer, Berlin, Heidelberg, 1993)CrossRefGoogle Scholar
  52. 52.
    Y. Kawahigashi, R. Longo, Classification of local conformal nets: Case \(\text{c} < 1\). Ann. Math. 160, 493 (2004)CrossRefMathSciNetGoogle Scholar

Copyright information

© The Author(s), under exclusive licence to Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Institute for Theoretical PhysicsUniversity of LeipzigLeipzigGermany
  2. 2.School of Mathematical SciencesDublin City UniversityDublinIreland

Personalised recommendations