Advertisement

The Role of Medical Image Computing and Machine Learning in Healthcare

  • Frederik MaesEmail author
  • David Robben
  • Dirk Vandermeulen
  • Paul Suetens
Chapter

Abstract

Medical image computing aims at developing computational strategies for robust, automated, quantitative analysis of relevant information from medical imaging data in order to support diagnosis, therapy planning and follow-up, and biomedical research. Medical image analysis is complicated by the complexity of the data itself—involving 3D tomographic images acquired with different modalities that are based on different physical principles, each with their own intrinsic characteristics and limitations, and by the complexity of the scene—involving normal and pathological anatomy and function, with complex 3D shapes and significant inter-subject variability. Hence, model-based approaches are needed that take prior knowledge about the image appearance of the relevant objects in the scene into account. These models are parameterized to deal with variability in object appearance, such that the image analysis problem can be formulated as an optimization problem of finding the model parameters that best explain the image data. Depending on the representation chosen for the model, different approaches can be discriminated. Machine learning offers the possibility to learn suitable models from previously analyzed data itself.

Keywords

Medical imaging Registration Segmentation Visualization Modeling Validation 

References

  1. 1.
    Suetens P. Fundamentals of medical imaging. 3rd ed. Cambridge: Cambridge University Press; 2017.CrossRefGoogle Scholar
  2. 2.
    Bankman IN. Handbook of medical imaging: processing and analysis. San Diego: Academic; 2000.Google Scholar
  3. 3.
    Hajnal JV, Hill DLG, Hawkes DJ. Medical image registration. Boca Raton: CRC Press; 2001.CrossRefGoogle Scholar
  4. 4.
    Suetens P, Fua P, Hanson AJ. Computational strategies for object recognition. ACM Comput Surv. 1992;24(1):5–61.CrossRefGoogle Scholar
  5. 5.
    Prince SJD. Computer vision: models, learning, and inference. Cambridge: Cambridge University Press; 2012.CrossRefGoogle Scholar
  6. 6.
    Greenspan H, van Ginneken B, Summers RM. Deep learning in medical imaging: overview and future promise of an exciting new technique. IEEE Trans Med Imaging. 2016;35(5):1153–9.CrossRefGoogle Scholar
  7. 7.
    Zhao F, Xie X. Energy minimization in medical image analysis: methodologies & applications. Int J Numer Methods Biomed Eng. 2015;32:1–63.Google Scholar
  8. 8.
    Kass M, Witkin A, Terzopoulos D. Snakes: active contour models. Int J Comput Vis. 1988;1(4):321–31.CrossRefGoogle Scholar
  9. 9.
    Cootes TF, Taylor CJ, Cooper DH, Graham J. Active shape models: their training and application. Comput Vis Image Underst. 1995;61(1):38–59.CrossRefGoogle Scholar
  10. 10.
    Cootes TF, Edwards GJ, Taylor CJ. Active appearance models. IEEE Trans Med Imaging. 2001;23(6):681–5.Google Scholar
  11. 11.
    Osher S, Paragios N. Geometric level set methods in imaging, vision, and graphics. Berlin: Springer; 2003.Google Scholar
  12. 12.
    Boykov Y, Veksler O, Zabih R. Fast approximate energy minimization via graph cuts. IEEE Trans Pattern Anal Mach Intell. 2001;23(11):1222–39.CrossRefGoogle Scholar
  13. 13.
    Turk M, Pentland AP. Eigenfaces for recognition. J Cogn Neurosci. 1991;3(1):71–96.CrossRefGoogle Scholar
  14. 14.
    Heimann T, Meinzer H-P. Statistical shape models for 3D medical image segmentation: a review. Med Image Anal. 2009;13:543–63.CrossRefGoogle Scholar
  15. 15.
    Davies R, Twining C, Taylor C. Statistical models of shape: optimisation and evaluation. Berlin: Springer; 2008.CrossRefGoogle Scholar
  16. 16.
    Maes F, Collignon A, Vandermeulen D, Marchal G, Suetens P. Multimodality image registration by maximization of mutual information. IEEE Trans Med Imaging. 1997;16:187–98.CrossRefGoogle Scholar
  17. 17.
    Pluim JPW, Maintz JBA, Viergever MA. Mutual-information-based registration of medical images: a survey. IEEE Trans Med Imaging. 2003;22(8):986–1004.CrossRefGoogle Scholar
  18. 18.
    Rueckert D, Sonoda LI, Hayes C, Hill DL, Leach MO, Hawkes DJ. Nonrigid registration using free-form deformations: application to breast MR images. IEEE Trans Med Imaging. 1996;18(8):712–21.CrossRefGoogle Scholar
  19. 19.
    Ashburner J. A fast diffeomorphic image registration algorithm. Neuroimage. 2007;38(1):95–113.CrossRefGoogle Scholar
  20. 20.
    Van Leemput K, Maes F, Vandermeulen D, Suetens P. Automated model-based tissue classification of MR images of the brain. IEEE Trans Med Imaging. 1999;18(10):897–908.CrossRefGoogle Scholar
  21. 21.
    LeCun Y, Bengio Y, Hinton GE. Deep learning. Nature. 2015;521:436–44.CrossRefGoogle Scholar
  22. 22.
    Litjens G, Kooi T, Bejnordi BE, Setio AAA, Ciompi F, Ghafoorian M, van der Laak JAWM, van Ginneken B, Sánchez CI. A survey on deep learning in medical image analysis. Med Image Anal. 2017;42:60–88.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Frederik Maes
    • 1
    Email author
  • David Robben
    • 1
  • Dirk Vandermeulen
    • 1
  • Paul Suetens
    • 1
  1. 1.KU LeuvenDepartment of ESAT/PSILeuvenBelgium

Personalised recommendations