Sur une variante des troncatures d’Arthur

  • Pierre-Henri ChaudouardEmail author
Conference paper
Part of the Simons Symposia book series (SISY)


We show that, for a large class of test functions, the unipotent contributions in the trace formula for GL(n) over a number field, can be obtained from zeta functions and integrals of Eisenstein series. The main innovation is a new truncation borrowed from a work of Schiffmann on Higgs bundles.


Arthur-Selberg trace formula Eisenstein series Orbital integral Unipotent contribution Zeta integral Reduction theory 


  1. 1.
    J. Arthur. The characters of discrete series as orbital integrals. Invent. Math., 32:205–261, 1976.MathSciNetCrossRefGoogle Scholar
  2. 2.
    J. Arthur. A trace formula for reductive groups I. Terms associated to classes in \(G(\mathbb {Q})\). Duke Math. J., 45:911–952, 1978.MathSciNetCrossRefGoogle Scholar
  3. 3.
    J. Arthur. A trace formula for reductive groups II. Applications of a truncation operator. Compositio Math., 40:87–121, 1980.Google Scholar
  4. 4.
    J. Arthur. A measure on the unipotent variety. Canad. J. Math., 37:1237–1274, 1985.MathSciNetCrossRefGoogle Scholar
  5. 5.
    J. Arthur. A local trace formula. Publ. Math., Inst. Hautes Études, 73:5–96, 1991.MathSciNetCrossRefGoogle Scholar
  6. 6.
    J. Arthur. An introduction to the trace formula. In Harmonic analysis, the trace formula, and Shimura varieties, volume 4 of Clay Math. Proc., pages 1–263. Amer. Math. Soc., Providence, RI, 2005.Google Scholar
  7. 7.
    K. Behrend. Semi-stability of reductive group schemes over curves. Math. Ann., 301(2):281–305, 1995.MathSciNetCrossRefGoogle Scholar
  8. 8.
    P.-H. Chaudouard. Sur certaines contributions unipotentes dans la formule des traces d’Arthur. Amer. J. Math., 140(3):699–752, 2018.MathSciNetCrossRefGoogle Scholar
  9. 9.
    P.-H. Chaudouard. La formule des traces pour les algèbres de Lie. Math. Ann., 322(2):347–382, 2002.MathSciNetCrossRefGoogle Scholar
  10. 10.
    P.-H. Chaudouard. Sur le comptage des fibrés de Hitchin. Astérisque, (369):223–284, 2015.MathSciNetzbMATHGoogle Scholar
  11. 11.
    P.-H. Chaudouard. Sur la contribution unipotente dans la formule des traces d’Arthur pour les groupes généraux linéaires. Israel J. Math., 218(1):175–271, 2017.MathSciNetCrossRefGoogle Scholar
  12. 12.
    T. Finis and E. Lapid. On the continuity of the geometric side of the trace formula. Acta Math. Vietnam., 41(3):425–455, 2016.MathSciNetCrossRefGoogle Scholar
  13. 13.
    R. Godement and H. Jacquet. Zeta functions of simple algebras. Lecture Notes in Mathematics, Vol. 260. Springer-Verlag, Berlin-New York, 1972.Google Scholar
  14. 14.
    D. Grayson. Reduction theory using semistability. Comment. Math. Helv., 59(4):600–634, 1984.MathSciNetCrossRefGoogle Scholar
  15. 15.
    T. Hausel and F. Rodriguez-Villegas. Mixed Hodge polynomials of character varieties. Invent. Math., 174(3):555–624, 2008. With an appendix by Nicholas M. Katz.MathSciNetCrossRefGoogle Scholar
  16. 16.
    W. Hoffmann. The trace formula and prehomogeneous vector spaces. In Families of automorphic forms and the trace formula, Simons Symp., pages 175–215. Springer, Cham, 2016.CrossRefGoogle Scholar
  17. 17.
    H. Kim and L. Weng. Volume of truncated fundamental domains. Proc. Amer. Math. Soc., 135(6):1681–1688, 2007.MathSciNetCrossRefGoogle Scholar
  18. 18.
    J.-P. Labesse and J.-L. Waldspurger. La formule des traces tordue d’après le Friday Morning Seminar, volume 31 of CRM Monograph Series. American Mathematical Society, Providence, RI, 2013. With a foreword by Robert Langlands [dual English/French text].Google Scholar
  19. 19.
    L. Lafforgue. Chtoucas de Drinfeld et conjecture de Ramanujan-Petersson. Astérisque, (243):ii+329, 1997.Google Scholar
  20. 20.
    S. Mozgovoy. Solutions of the motivic ADHM recursion formula. Int. Math. Res. Not. IMRN, (18):4218–4244, 2012.MathSciNetCrossRefGoogle Scholar
  21. 21.
    S. Mozgovoy and O. Schiffmann. Counting Higgs bundles. ArXiv e-prints, November 2014.Google Scholar
  22. 22.
    O. Schiffmann. Indecomposable vector bundles and stable Higgs bundles over smooth projective curves. Ann. of Math. (2), 183(1):297–362, 2016.MathSciNetCrossRefGoogle Scholar
  23. 23.
    U. Stuhler. Eine Bemerkung zur Reduktionstheorie quadratischer Formen. Arch. Math. (Basel), 27(6):604–610, 1976.MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Université Paris Diderot (Paris 7) et Institut Université de France, Institut de Mathématiques de Jussieu-Paris Rive Gauche, UMR 7586PARIS Cedex 13France

Personalised recommendations