Advertisement

The Unsolvability of the Quintic

  • Jeremy Gray
Chapter
Part of the Springer Undergraduate Mathematics Series book series (SUMS)

Abstract

This chapter is concerned with another momentous advance in algebra around 1800: the discovery that the quantic equation cannot be solved by an algebraic formula. But how can a negative of this kind be proved? What is it to analyse how a problem can be solved? Here, we look at the works of Ruffini and (in particular) Abel after considering what it involves to solve an equation algebraically.

References

  1. Abel, N.H.: Mémoire sur les équations algébriques, ou l’on démontre l’impossibilité de la résolution de l’équation générale du cinquième degré, vol. 1, pp. 28–34. Grundahl, Christiania (1824)Google Scholar
  2. Abel, N.H.: Beweis der Unmöglichkeit der algebraischen Auflösung der allgemeinen Gleichunge von höheren Graden als dem vierten aufzulösen, [etc.], J. Math. 1, 65–84 (1826); tr. as Démonstration de l’impossibilité de la résolution algébrique des équations générales qui passent le quatrième degré in Oeuvres complètes, 1, 66–87, republished with an appendix in Bulletin de sciences, mathematiques, astronomiques, [etc.] (Férussac’s Bulletin) 6, 1826, 347–354Google Scholar
  3. Abel, N.H.: Mémoire sur une classe particulière d’équations résolubles algébriquement, vol. 1, pp. 478–507 (1829)Google Scholar
  4. Ayoub, R.G.: Paolo Ruffini’s contributions to the quintic. Arch. Hist. Exact Sci. 23, 253–277 (1980)MathSciNetCrossRefGoogle Scholar
  5. Burkhardt, H.: Die Anfänge der Gruppentheorie und Paolo Ruffini. Z. Math. 37(suppl.), 119–159 (1892)Google Scholar
  6. Kiernan, B.M.: The development of Galois theory from Lagrange to Artin. Arch. Hist. Exact Sci. 8, 40–154 (1971)Google Scholar
  7. Kronecker, L.: Ueber die algebraisch auflösbaren Gleichungen, pp. 365–374. Akademie der Wissenschaften, Berlin, Monatsberichte der Königlich Preussischen Akademie der Wissenschaften zu Berlin (1853); in Werke, IV, 1–11Google Scholar
  8. Lützen, J.: Why was Wantzel overlooked for a century? The changing importance of an impossibility result. Hist. Math. 374–394 (2009)Google Scholar
  9. Montucla, J.-É.: Histoire des recherches sur la quadrature du cercle. Jombert, Paris (1754)Google Scholar
  10. Pesic, P.: Abel’s Proof. MIT Press, Cambridge (2003)MATHGoogle Scholar
  11. Rosen, M.I.: Niels Hendrik Abel and Equations of the Fifth Degree. Am. Math. Mon. 102, 495–505 (1995)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Jeremy Gray
    • 1
    • 2
  1. 1.School of Mathematics and StatisticsThe Open UniversityMilton KeynesUK
  2. 2.Mathematics InstituteUniversity of WarwickCoventryUK

Personalised recommendations