Pulsate Perfusion of Allografts

  • Matteo Tozzi
  • Gabriele Piffaretti
  • Marco Franchin
  • Patrizio Castelli


‘If one could substitute for the heart a kind of injection of arterial blood, either natural or artificial made, one would succeed easily in maintaining alive indefinitely any part of the body’

Julien Jean Cesar Le Gallois, French physiologist (1770–1814)


  1. 1.
    Carrel A, Lindberg CA. The culture of whole organs. Science. 1935;81:621–3.PubMedGoogle Scholar
  2. 2.
    Belzer FO, Ashby BS, Gulyassy PF, Powell M. Successful seventeen-hour preservation and transplantation of human-cadaver kidney. N Engl J Med. 1968;278:608–10.PubMedGoogle Scholar
  3. 3.
    Belzer FO, Southard JH. Principles of solid-organ preservation by cold storage. Transplantation. 1988;45:673–6.PubMedGoogle Scholar
  4. 4.
    Gallinat A, et al. Machine perfusion versus cold storage for the preservation of kidney from donors ≥65 years allocated in the eurotransplant senior programme. Nephrol Dial Transplant. 2012;27:4458–63.PubMedGoogle Scholar
  5. 5.
    Timsit MO, Tullius SG. Hypothermic kidney preservation: a remembrance of the past in the future? Curr Opin Organ Transplant. 2011;16:162–8.PubMedGoogle Scholar
  6. 6.
    Schlegel A, Rougemont O, Graf R, Clavien PA, Dutkowski P. Protective mechanisms of end-ischemic cold machine perfusion in DCD liver grafts. J Hepatol. 2013;58:278–86.PubMedGoogle Scholar
  7. 7.
    Maathuis MH, Manekeller S, van der Plaats A, et al. Improved kidney graft function after preservation using a novel hypothermic machine perfusion device. Ann Surg. 2007;246:982–8.PubMedGoogle Scholar
  8. 8.
    Pegg DE, et al. Renal preservation by hypothermic perfusion. The lack of influence of pulsate flow. Cryobiology. 1976;13:161–7.PubMedGoogle Scholar
  9. 9.
    Gimbrone MA Jr, et al. Endothelial dysfunction, hemodynamic forces, and atherogenesis. Ann N Y Acad Sci. 2000;902:230–9.PubMedGoogle Scholar
  10. 10.
    Travis AR, et al. Vascular pulsatility in patients with a pulsatile- or continuous-flow ventricular assist device. J Thorac Cardiovasc Surg. 2007;133:517–24.PubMedGoogle Scholar
  11. 11.
    Crow S, et al. Comparative analysis of von Willebrand factor profile in pulsatile and continuous left ventricular assist device recipients. ASAIO J. 2010;56:441–5.PubMedGoogle Scholar
  12. 12.
    Treckmann J, Moers C, Smits JM, Gallinat A, Maathuis MH, van Kasterop-Kutz M, Jochmans I, Homan van der Heide JJ, Squifflet JP, van Heurn E, Kirste GR, Rahmel A, Leuvenink HG, Pirenne J, Ploeg RJ, Paul A. Machine perfusion versus cold storage for preservation of kidneys from expanded criteria donors after brain death. Transpl Int. 2011;24(6):548–54.PubMedGoogle Scholar
  13. 13.
    Watson CJE. Cold machine perfusion versus static cold storage of kidney donated after cardiac death: a UK multicentre randomized controlled trial. Am J Transplant. 2010;10:1991–9.PubMedGoogle Scholar
  14. 14.
    Jochmans I, Moers C, Smits JM, et al. The prognostic value of renal resistance during hypothermic machine perfusion of deceased donor kidneys. Am J Transplant. 2011;11:2214–20.PubMedGoogle Scholar
  15. 15.
    Gallinat A, Fox M, Luer B, Efferz P, Paul A, Minor T. Role of pulsatility in hypothermic reconditioning of porcine kidney grafts by machine perfusion after cold storage. Transplantation. 2013;96:538–42.PubMedGoogle Scholar
  16. 16.
    Guarrera JV, Henry SD, Samstein B, et al. Hypothermic machine preservation in human liver transplantation: the first clinical series. Am J Transplant. 2010;10:372–81.PubMedGoogle Scholar
  17. 17.
    Ichii O, Yabuki A, Sasaki N, et al. Pathological correlations between podocyte injuries and renal functions in canine and feline chronic kidney diseases. Histol Histopathol. 2011;26:1243–55.PubMedGoogle Scholar
  18. 18.
    Fiévet B, Louvard D, Arpin M. ERM proteins in epithelial cell organization and functions. Biochim Biophys Acta. 2007;1773:653–60.PubMedGoogle Scholar
  19. 19.
    Luer B, Koetting M, Efferz P, Minor T. Role of oxygen during hypothermic machine perfusion preservation of the liver. Transpl Int. 2010;23:944–50.PubMedGoogle Scholar
  20. 20.
    Mitchell T, Rotaru D, Saba H, Smith RA, Murphy MP, MacMillan-Crow LA. The mitochondria-targeted antioxidant mitoquinone protects against cold storage injury of renal tubular cells and rat kidneys. J Pharmacol Exp Ther. 2011;336:682–92.PubMedPubMedCentralGoogle Scholar
  21. 21.
    Barklin A. Systemic inflammation in the brain-dead organ donor. Acta Anaesthesiol Scand. 2009;53:425–35.PubMedGoogle Scholar
  22. 22.
    Yoshida M, Honma S. Regeneration of injured renal tubules. J Pharmacol Sci. 2014;124:117–22.PubMedGoogle Scholar
  23. 23.
    Bonventre JV, Yang L. Cellular pathophysiology of ischemic acute kidney injury. J Clin Invest. 2011;121:4210–21.PubMedPubMedCentralGoogle Scholar
  24. 24.
    Toronyi E. Role of apoptosis in the kidney after reperfusion. Orv Hetil. 2008;149:305–15.PubMedGoogle Scholar
  25. 25.
    Andrea H, Steven CB. Apoptosis and acute kidney injury. Kidney Int. 2011;80:29–40.Google Scholar
  26. 26.
    Koçkara A, Kayatas M. Renal cell apoptosis and new treatment options in sepsis-induced acute kidney injury. Ren Fail. 2013;35:291–4.PubMedGoogle Scholar
  27. 27.
    Hartleben B, Wanner N, Huber TB. Autophagy in glomerular health and disease. Semin Nephrol. 2014;34:42–52.PubMedGoogle Scholar
  28. 28.
    Kondo T, Takeuchi K, Doi Y, Yonemura S, Nagata S, Tsukita S. ERM (ezrin/radixin/moesin)-based molecular mechanism of microvillar breakdown at an early stage of apoptosis. J Cell Biol. 1997;139:749–58.PubMedPubMedCentralGoogle Scholar
  29. 29.
    Viswanatha R, Bretscher A1, Garbett D. Dynamics of ezrin and EBP50 in regulating microvilli on the apical aspect of epithelial cells. Biochem Soc Trans. 2014;42:189–94.PubMedPubMedCentralGoogle Scholar
  30. 30.
    Gautreau A, Poullet P, Louvard D, Arpin M. Ezrin, a plasma membrane-microfilament linker, signals cell survival through the phosphatidylinositol 3-kinase/Akt pathway. Proc Natl Acad Sci U S A. 1999;96:7300–5.PubMedPubMedCentralGoogle Scholar
  31. 31.
    Zhang Y, Fu Z, Zhong Z, Wang R, Hu L, Xiong Y, Wang Y, Ye Q. Hypothermic machine perfusion decreases renal cell apoptosis during ischemia/reperfusion injury via the Ezrin/AKT pathway. Artif Organs. 2016;40(2):129–35.PubMedGoogle Scholar
  32. 32.
    Hamada T, Duarte S, Tsuchihashi S, Busuttil RW, Coito AJ. Inducible nitric oxide synthase deficiency impairs matrix metalloproteinase-9 activity and disrupts leukocyte migration in hepatic ischemia/reperfusion injury. Am J Pathol. 2009;174:2265–77.PubMedPubMedCentralGoogle Scholar
  33. 33.
    Kunugi S, Shimizu A, Kuwahara N, et al. Inhibition of matrix metalloproteinases reduces ischemia-reperfusion acute kidney injury. Lab Investig. 2011;91:170–80.PubMedGoogle Scholar
  34. 34.
    Gu Z, Kaul M, Yan B, et al. S-nitrosylation of matrix metalloproteinases: signaling pathway to neuronal cell death. Science. 2002;297:1186–90.PubMedGoogle Scholar
  35. 35.
    Fu Z, Ye Q, Zhang Y, Zhong Z, Xiong Y, Wang Y, Hu L, Wang W, Huang W, Ko DS. Hypothermic machine perfusion reduced inflammatory reaction by downregulating the expression of matrix metalloproteinase 9 in a reperfusion model of donation after cardiac death. Artif Organs. 2016;40(6):E102–11.PubMedGoogle Scholar
  36. 36.
    Patal SK, et al. Effect of increased pressure during pulsatile pump perfusion of deceased donor kidney in transplantation. Transplant Proc. 2012;44:2202–6.Google Scholar
  37. 37.
    McCormick SM, et al. DNA microarray reveals changes in gene expression of shear stressed human umbilical vein endothelial cells. Proc Natl Acad Sci U S A. 2001;98:8955–60.PubMedPubMedCentralGoogle Scholar
  38. 38.
    Davies PF. Hemodynamic shear stress and endothelium in cardiovascular pathophysiology. Nat Clin Pract Cardiovasc Med. 2009;6:16–26.PubMedGoogle Scholar
  39. 39.
    Garcia-Cardena G, et al. Biochemical activation of vascular endothelium as a determinant of its functional phenotype. Proc Natl Acad Sci U S A. 2001;98:4478–85.PubMedPubMedCentralGoogle Scholar
  40. 40.
    Fledderus JO. Prolonged shear stress and KLF2 suppress constitutive proinflammatory transcription through inhibition of ATF2. Blood. 2007;109:4249–57.PubMedGoogle Scholar
  41. 41.
    Dekker RJ, van Thienen JV, Rohlena J, de Jager SC, Elderkamp YW, Seppen J, de Vries CJ, Biessen EA, van Berkel TJ, Pannekoek H, Horrevoets AJ. Endothelial KLF2 links local arterial shear stress levels to the expression of vascular tone-regulating genes. Am J Pathol. 2005;167(2):609–18.PubMedPubMedCentralGoogle Scholar
  42. 42.
    Dekker RJ, Boon RA, Rondaij MG, Kragt A, Volger OL, Elderkamp YW, Meijers JC, Voorberg J, Pannekoek H, Horrevoets AJ. KLF2 provokes a gene expression pattern that establishes functional quiescent differentiation of the endothelium. Blood. 2006;107(11):4354–63.PubMedGoogle Scholar
  43. 43.
    van Thienen JV, Fledderus JO, Dekker RJ, Rohlena J, van Ijzendoorn GA, Kootstra NA, Pannekoek H, Horrevoets AJ. Shear stress sustains atheroprotective endothelial KLF2 expression more potently than statins through mRNA stabilization. Cardiovasc Res. 2006;72(2):231–4.PubMedGoogle Scholar
  44. 44.
    Wight JP, Chilcott JB, Holmes MW, Brewer N. Pulsatile machine perfusion vs. cold storage of kidneys for transplantation: a rapid and systematic review. Clin Transpl. 2003;17(4):293–307.Google Scholar
  45. 45.
    Moers C, Smits JM, Maathuis MH, Treckmann J, van Gelder F, Napieralski BP, van Kasterop-Kutz M, van der Heide JJ, Squifflet JP, van Heurn E, Kirste GR, Rahmel A, Leuvenink HG, Paul A, Pirenne J, Ploeg RJ. Machine perfusion or cold storage in deceased-donor kidney transplantation. N Engl J Med. 2009;360(1):7–19.PubMedGoogle Scholar
  46. 46.
    Schold JD, Kaplan B, Howard RJ, Reed AI, Foley DP, Meier-Kriesche HU. Are we frozen in time? Analysis of the utilization and efficacy of pulsatile perfusion in renal transplantation. Am J Transplant. 2005;5(7):1681–8.PubMedGoogle Scholar
  47. 47.
    Chueh S-CJ. The benefit of pulsate machine perfusion of standard criteria deceased donor kidney at a geographically remote transplant center. ASAIO J. 2014;60(1):76–80.PubMedGoogle Scholar
  48. 48.
    Ruggenenti P. Ways to boost kidney transplant viability: a real need for the best use of older donors. Am J Transplant. 2006;6:2543–7.PubMedGoogle Scholar
  49. 49.
    Wells AC. Donor kidney disease and transplant outcome for kidney donated after cardiac death. Br J Surg. 2009;96:299–304.PubMedGoogle Scholar
  50. 50.
    Cantafio AW, et al. Risk stratification of kidney from donation after cardiac death donors and the utility of machine perfusion. Clin Transpl. 2011;25:e530–40.Google Scholar
  51. 51.
    Lodhi SA, Lamb KE, Uddin I, Meier-Kriesche HU. Pulsatile pump decreases risk of delayed graft function in kidneys donated after cardiac death. Am J Transplant. 2012;12(10):2774–80.PubMedGoogle Scholar
  52. 52.
    Balfoussia D, et al. Advances in machine perfusion graft viability assessment in kidney, liver, pancreas, lung, and heart transplant. Exp Clin Transplant. 2012;10:87–100.PubMedGoogle Scholar
  53. 53.
    Op den Dries S, et al. Ex vivo normothermic machine perfusion and viability testing of discarded human donor livers. Am J Transplant. 2013;13:1327–35.Google Scholar
  54. 54.
    Maheshwi A, et al. Biliary complications and outcome of liver transplant from donors after cardiac death. Liver Transpl. 2007;13:1645–53.Google Scholar
  55. 55.
    Plaeg RJ, et al. Risk factors for primary dysfunction after liver transplantation-a multivariate analysis. Transplantation. 1993;55:807–13.Google Scholar
  56. 56.
    Guarrera JV, et al. Hypothermic machine perfusion in human liver transplantation: the first clinical series. Am J Transplant. 2010;10:372–81.PubMedGoogle Scholar
  57. 57.
    Slapak M, et al. Twenty-four hours liver preservation by the use of continuous pulsate perfusion and hyperbaric oxygen. Transplantation. 1967;5(s):1154–8.Google Scholar
  58. 58.
    Brettschneider L, et al. The use of combined preservation technique for extended storage of orthotopic liver homografts. Surg Gynecol Obstet. 1968;126:263.PubMedPubMedCentralGoogle Scholar
  59. 59.
    Brettschneider L, et al. Experimental and clinical preservation of orthotopic liver homograft. In: Norman J, editor. Organ perfusion and preservation. New York: Allpeton-Century Crofts; 1968. p. 271–84.Google Scholar
  60. 60.
    Kamada N, et al. Orthotopic rat liver transplantation after long-term preservation by continuous perfusion with fluorocarbon emulsion. Transplantation. 1980;30:43–8.PubMedGoogle Scholar
  61. 61.
    Guarrera JV, et al. Hypothermic machine perfusion of liver graft for transplantation: technical development in human discard and miniature swine models. Transplant Proc. 2005;37:323–5.PubMedGoogle Scholar
  62. 62.
    Ingemansson R, Eyjolfsson A, Mared L, et al. Clinical transplantation of initially rejected donor lungs after reconditioning ex vivo. Ann Thorac Surg. 2009;87:255–60.PubMedGoogle Scholar
  63. 63.
    Cypel M, Yeung JC, Liu M, et al. Normothermic ex vivo lung perfusion in clinical lung transplantation. N Engl J Med. 2011;364:1431–40.PubMedGoogle Scholar
  64. 64.
    Mohite P, Sabashnikov A, Garcia Saez D, et al. Utilization of the organ care system lung for the assessment of lungs form a donor after cardiac death (DCD) before bilateral transplantation. Perfusion. 2014;29:1–4.Google Scholar
  65. 65.
    Ciubotaru A, Haverich A. Ex vivo approach to treat failing organs: expanding the limits. Eur Surg Res. 2015;54:64–74.PubMedGoogle Scholar
  66. 66.
    Koerner MM, Ghodsizad A, Schulz U, et al. Normothermic ex vivo allograft blood perfusion in clinical heart transplantation. Heart Surg Forum. 2014;17:E141–5.Google Scholar
  67. 67.
    Mozes MF, Skolek RB, Korf BC. Use of perfusion parameters in predicting outcomes of machine-preserved kidneys. Transplant Proc. 2005;37:350–1.PubMedGoogle Scholar
  68. 68.
    Jochmans I, Moers C, Smits JM, Leuvenink HG, Treckmann J, Paul A, Rahmel A, Squifflet JP, van Heurn E, Monbaliu D, Ploeg RJ, Pirenne J. Machine perfusion versus cold storage for the preservation of kidneys donated after cardiac death: a multicenter, randomized, controlled trial. Ann Surg. 2010;252(5):756–64.PubMedGoogle Scholar
  69. 69.
    de Vries EE, Hoogland ER, Winkens B, Snoeijs MG, van Heurn LW. Renovascular resistance of machine-perfused DCD kidneys is associated with primary nonfunction. Am J Transplant. 2011;11(12):2685–91.PubMedGoogle Scholar
  70. 70.
    Gómez V, Orosa A, Rivera M, Diez-Nicolás V, Hevia V, Alvarez S, Carracedo D, Ramos E, Burgos FJ. Resistance index determination in the pre and post kidney transplantation time points in graft dysfunction diagnosis. Transplant Proc. 2015;47(1):34–7.PubMedGoogle Scholar
  71. 71.
    Paredes-Zapata D, Ruiz-Arranz A, Rodriguez-Villar C, Roque-Arda R, Peri-Cusi L, Saavedra-Escobar S, Vizcaino-Elias F, Garcia-Rodriguez X, Bohils-Valle M, Rodriguez-Peña S, Quijada-Martorell M, Gonzalez-Rodriguez JJ, Oppenheimer-Salinas F, Alcaraz-Asensio A, Adalia-Bartolome R. Does the pulsatile preservation machine have any impact in the discard rate of kidneys from older donors after brain death? Transplant Proc. 2015;47(8):2324–7.PubMedGoogle Scholar
  72. 72.
    Guarrera JV, Goldstein MJ, Samstein B, et al. When good kidneys pump badly: outcomes of deceased donor renal allografts with poor pulsatile perfusion characteristics. Transpl Int. 2010;23:444–6.PubMedGoogle Scholar
  73. 73.
    Weeder PD, van Rijn R, Porte RJ. Machine perfusion in liver transplantation as a tool to prevent non-anastomotic biliary strictures: rationale, current evidence and future directions. J Hepatol. 2015;63:265–75.PubMedGoogle Scholar
  74. 74.
    Steen S, Sjo¨berg T, Pierre L, Liao Q, Eriksson L, Algotsson L. Transplantation of lungs from a non-heart-beating donor. Lancet. 2001;357:825–9.PubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Matteo Tozzi
    • 1
  • Gabriele Piffaretti
    • 1
  • Marco Franchin
    • 1
  • Patrizio Castelli
    • 1
  1. 1.Vascular Surgery, Department of Medicine and Surgery, University of Insubria School of MedicineCircolo University Teaching HospitalVareseItaly

Personalised recommendations