Advertisement

Genomic Approaches to Enhance Stress Tolerance for Productivity Improvements in Pearl Millet

  • Srikanth Bollam
  • Vijayalakshmi Pujarula
  • Rakesh K. Srivastava
  • Rajeev Gupta
Chapter

Abstract

Pearl millet [Pennisetum glaucum (L.) R. Br.], the sixth most important cereal crop (after rice, wheat, maize, barley, and sorghum), is grown as a grain and stover crop by the small holder farmers in the harshest cropping environments of the arid and semiarid tropical regions of sub-Saharan Africa and South Asia. Millet is grown on ~31 million hectares globally with India in South Asia; Nigeria, Niger, Burkina Faso, and Mali in western and central Africa; and Sudan, Uganda, and Tanzania in Eastern Africa as the major producers. Pearl millet provides food and nutritional security to more than 500 million of the world’s poorest and most nutritionally insecure people. Global pearl millet production has increased over the past 15 years, primarily due to availability of improved genetics and adoption of hybrids in India and expanding area under pearl millet production in West Africa. Pearl millet production is challenged by various biotic and abiotic stresses resulting in a significant reduction in yields. The genomics research in pearl millet lagged behind because of multiple reasons in the past. However, in the recent past, several efforts were initiated in genomic research resulting into a generation of large amounts of genomic resources and information including recently published sequence of the reference genome and re-sequencing of almost 1000 lines representing the global diversity. This chapter reviews the advances made in generating the genetic and genomics resources in pearl millet and their interventions in improving the stress tolerance to improve the productivity of this very important climate-smart nutri-cereal.

Keywords

Genomics Markers Molecular breeding Nutrition Pearl millet Stress tolerance 

Notes

Acknowledgment

Authors greatly acknowledge the funding support from Newton fund (DBT-India and BBSRC, UK) for CINTRIN (BT/IN/UK-VNC/42/RG/2015-16) to RG, RKS, VP, and DST-SERB (PDF/2016/003203) for NPDF fellowship to SB.

References

  1. Abrol YP, Adhya TK, Aneja VP, Raghuram N, Pathak H, Kulshrestha U, Sharma C, Singh B (2017) The Indian nitrogen assessment, 1st edn. Elsevier, p 568 eBook ISBN: 9780128119044, Paperback ISBN: 9780128118368. Amsterdam, NetherlandsGoogle Scholar
  2. Ahuja I, de Vos RC, Bones AM, Hall RD (2010) Plant molecular stress responses face climate change. Trends Plant Sci 15(12):664–674PubMedCrossRefGoogle Scholar
  3. Allouis S, Qi X, Lindup S, Gale MD, Devos KM (2001) Construction of a BAC library of pearl millet, Pennisetum glaucum. Theor Appl Genet 102(8):1200–1205CrossRefGoogle Scholar
  4. Ambawat S, Senthilvel S, Hash CT, Nepolean T, Rajaram V, Eshwar K, Sharma R, Thakur RP, Rao VP, Yadav RC, Srivastava RK (2016) QTL mapping of pearl millet rust resistance using an integrated DArT-and SSR-based linkage map. Euphytica 209(2):461–476CrossRefGoogle Scholar
  5. Anbessa Y, Juskiw P, Good A, Nyachiro J, Helm J (2009) Genetic variability in nitrogen use efficiency of spring barley. Crop Sci 49(4):1259–1269CrossRefGoogle Scholar
  6. Angarawai II, Kadams AM, Bello D, Mohammed SG (2009) Interaction of gene effect and number of loci on heritability and heterosis for downy mildew resistance in Nigerian elite pearl millet lines. American-Eurasian J Agric Environ Sci 5(1):106–114Google Scholar
  7. Anuradha N, Satyavathi CT, Bharadwaj C, Nepolean T, Sankar SM, Singh SP, Meena MC, Singhal T, Srivastava RK (2017) Deciphering genomic regions for high grain iron and zinc content using association mapping in pearl millet. Front Plant Sci 8:412PubMedCrossRefPubMedCentralGoogle Scholar
  8. Arya L, Verma M, Gupta VK, Karihaloo JL (2009) Development of EST SSRs in finger millet (Eleusine coracana ssp coracana) and their transferability to pearl millet (Pennisetum glaucum). J Plant Biochem Biotechnol 18(1):97–100CrossRefGoogle Scholar
  9. Babu BK, Dinesh P, Agrawal PK, Sood S, Chandrashekara C, Bhatt JC, Kumar A (2014) Comparative genomics and association mapping approaches for blast resistant genes in finger millet using SSRs. PLoS One 9(6):e99182PubMedCrossRefPubMedCentralGoogle Scholar
  10. Basavaraj G, Rao PP, Bhagavatula S, Ahmed W (2010) Availability and utilization of pearl millet in India. SAT eJournal 8:1–6Google Scholar
  11. Bastiaans L (1993) Effects of leaf blast on growth and production of a rice crop. 2. Analysis of the reduction in dry matter production, using two models with different complexity. Neth J Plant Pathol 99(3):19–28CrossRefGoogle Scholar
  12. Bertin I, Zhu JH, Gale MD (2005) SSCP-SNP in pearl millet a new marker system for comparative genetics. Theor Appl Genet 110(8):1467–1472PubMedCrossRefPubMedCentralGoogle Scholar
  13. Bidinger FR, Mahalakshmi V, Rao GD (1987) Assessment of drought resistance in pearl millet (Pennisetum americanum (L.) Leeke). II. Estimation of genotype response to stress. Aust J Agric Res 38(1):49–59CrossRefGoogle Scholar
  14. Bidinger FR, Serraj R, Rizvi SM, Howarth C, Yadav RS, Hash CT (2005) Field evaluation of drought tolerance QTL effects on phenotype and adaptation in pearl millet [Pennisetum glaucum (L.) R. Br.] top cross hybrids. Field Crop Res 94(1):14–32CrossRefGoogle Scholar
  15. Bidinger FR, Nepolean T, Hash CT, Yadav RS, Howarth CJ (2007) Quantitative trait loci for grain yield in pearl millet under variable postflowering moisture conditions. Crop Sci 47(3):969–980CrossRefGoogle Scholar
  16. Borrell AK, Mullet JE, George-Jaeggli B, van Oosterom EJ, Hammer GL, Klein PE, Jordan DR (2014) Drought adaptation of stay-green sorghum is associated with canopy development, leaf anatomy, root growth, and water uptake. J Exp Bot 65(21):6251–6263PubMedCrossRefPubMedCentralGoogle Scholar
  17. Bray EA (2000) Response to abiotic stress. Biochem Mol Biol Plants: In: Gruissem, W. and Jones, R., Eds., American Society of Plant Physiologists, Rockville, 1158–1203Google Scholar
  18. Breese WA, Hash CT, Devos KM, Howarth CJ, Leslie JF (2002) Pearl millet genomics and breeding for resistance to downy mildew. Sorghum Millets Dis:243–246. In J. F. Leslie (ed), Sorghum and Millets Diseases 2000, Iowa State Press, Ames, Iowa.Google Scholar
  19. Buchanan BB, Gruissem W, Jones RL (2000) Biochemistry & molecular biology of plants. American Society of Plant Physiologists, RockvilleGoogle Scholar
  20. Budak H, Pedraza F, Cregan PB, Baenziger PS, Dweikat I (2003) Development and utilization of SSRs to estimate the degree of genetic relationships in a collection of pearl millet germplasm. Crop Sci 43(6):2284–2290CrossRefGoogle Scholar
  21. Chavan UD, Chavan JK, Kadam SS (1988) Effect of fermentation on soluble proteins and in vitro protein digestibility of Sorghum, green gram and Sorghum-green gram blends. J Food Sci 53(5):1574–1575CrossRefGoogle Scholar
  22. Choudhary M, Padaria JC (2015) Transcriptional profiling in pearl millet (Pennisetum glaucum LR Br.) for identification of differentially expressed drought responsive genes. Physiol Mol Biol Plants 21(2):187–196PubMedCrossRefPubMedCentralGoogle Scholar
  23. Crawford NM, Glass AD (1998) Molecular and physiological aspects of nitrate uptake in plants. Trends Plant Sci 3(10):389–395CrossRefGoogle Scholar
  24. Devos KM, Gale MD (2000) Genome relationships: the grass model in current research. Plant Cell 12(5):637–646PubMedCrossRefPubMedCentralGoogle Scholar
  25. DeVries J, Toenniessen GH (2001) Securing the harvest: biotechnology, breeding, and seed systems for African crops. CABI, WallingfordCrossRefGoogle Scholar
  26. Dita MA, Rispail N, Prats E, Rubiales D, Singh KB (2006) Biotechnology approaches to overcome biotic and abiotic stress constraints in legumes. Euphytica 147(1–2):1–24CrossRefGoogle Scholar
  27. Duvick DN (2005) Genetic progress in yield of United States maize (Zea mays L.). Maydica 50(3/4):193Google Scholar
  28. Dwivedi SL, Upadhyaya HD, Senthilvel S, Tom Hash C, Fukunaga K, Diao X, Santra D, Baltensperge D, Prasad M (2012) Millets Genet Genomic Res: In: PlantBreeding Reviews (Ed: Janick J) 35 pp 247-375, JohnWiley & Sons, USAGoogle Scholar
  29. Firbank LG (2005) Striking a new balance between agricultural production and biodiversity. Ann Appl Biol 146(2):163–175CrossRefGoogle Scholar
  30. Frink CR, Waggoner PE, Ausubel JH (1999) Nitrogen fertilizer: retrospect and prospect. Proc Natl Acad Sci 96(4):1175–1180PubMedCrossRefGoogle Scholar
  31. Garcia-Huidobro J, Monteith JL, Squire GR (1982) Time, temperature and germination of pearl millet (Pennisetum typhoides S. & H.) I. Constant temperature. J Exp Bot 33(2):288–296CrossRefGoogle Scholar
  32. Garcia-Huidobro J, Monteith JL, Squire GR (1985) Time, temperature and germination of pearl millet (Pennisetum typhoides S. & H.): III. Inhibition of germination by short exposure to high temperature. J Exp Bot 36:3CrossRefGoogle Scholar
  33. Garnett T (2009) Livestock-related greenhouse gas emissions: impacts and options for policy makers. Environ Sci Pol 12(4):491–503CrossRefGoogle Scholar
  34. Good AG, Shrawat AK, Muench DG (2004) Can less yield more? Is reducing nutrient input into the environment compatible with maintaining crop production? Trends Plant Sci 9(12):597–605PubMedCrossRefGoogle Scholar
  35. Gulia SK, Wilson JP, Carter J, Singh BP (2007) Progress in grain pearl millet research and market development. Issues in new crops and new uses. ASHS Press, Alexandria, pp 196–203Google Scholar
  36. Gupta SK, Rai KN, Singh P, Ameta VL, Gupta SK, Jayalekha AK, Mahala RS, Pareek S, Swami ML, Verma YS (2015) Seed set variability under high temperatures during flowering period in pearl millet (Pennisetum glaucum L.(R.) Br.). Field Crop Res 171:41–53CrossRefGoogle Scholar
  37. Hakeem KR, Ahmad A, Iqbal M, Gucel S, Ozturk M (2011) Nitrogen-efficient rice cultivars can reduce nitrate pollution. Environ Sci Pollut Res 18(7):1184–1193CrossRefGoogle Scholar
  38. Hanna WW, Wells HD (1989) Inheritance of Pyricularia leaf spot resistance in pearl millet. J Hered 80(2):145–147CrossRefGoogle Scholar
  39. Hanna WW, Wells HD, Burton GW (1985) Dominant gene for rust resistance in pearl millet. J Hered 76(2):134CrossRefGoogle Scholar
  40. Hanna WW, Wells HD, Burton GW (1987) Registration of pearl millet inbred parental lines, Tift 85D2A1 and Tift 85D2B 1. Crop Sci 27(6):1324–1325CrossRefGoogle Scholar
  41. Hash CT, Witcombe JR (2001) Pearl millet molecular marker research. Int Sorghum Millets Newsl 42:8–15Google Scholar
  42. Hash CT, Witcombe JR (2002) Gene management and breeding for downy mildew resistance. Sorghum Millets Dis:27–36. In: Leslie JF (ed) Sorghum and millets pathology 2000. Iowa State Press, Ames.Google Scholar
  43. Hash CT, Raj AB, Lindup S, Sharma A, Beniwal CR, Folkertsma RT, Mahalakshmi V, Zerbini E, Blümmel M (2003) Opportunities for marker-assisted selection (MAS) to improve the feed quality of crop residues in pearl millet and sorghum. Field Crop Res 84(1–2):79–88CrossRefGoogle Scholar
  44. Hash CT, Thakur RP, Rao VP, Raj AB (2006) Evidence for enhanced resistance to diverse isolates of pearl millet downy mildew through gene pyramiding. Int Sorghum Millets Newsl 47:134–138Google Scholar
  45. Hill GM, Hanna WW (1990) Nutritive characteristics of pearl millet grain in beef cattle diets. J Anim Sci 68(7):2061–2066PubMedCrossRefGoogle Scholar
  46. Howarth CJ, Yadav RS (2002) Successful marker assisted selection for drought tolerance and disease resistance in pearl millet. Iger Innov 6:18–21Google Scholar
  47. Hu Z, Mbacké B, Perumal R, Guèye MC, Sy O, Bouchet S, Prasad PV, Morris GP (2015) Population genomics of pearl millet (Pennisetum glaucum (L.) R. Br.): comparative analysis of global accessions and Senegalese landraces. BMC Genomics 16(1):1048PubMedCrossRefPubMedCentralGoogle Scholar
  48. Jogaiah S, Sharathchandra RG, Raj N, Vedamurthy AB, Shetty HS (2014) Development of SCAR marker associated with downy mildew disease resistance in pearl millet (Pennisetum glaucum L.). Mol Biol Rep 41(12):7815–7824PubMedCrossRefGoogle Scholar
  49. Jogaiah S, Kurjogi M, Govind SR, Huntrike SS, Basappa VA, Tran LS (2016) Isolation and evaluation of proteolytic actinomycete isolates as novel inducers of pearl millet downy mildew disease protection. Sci Rep 6:30789PubMedCrossRefPubMedCentralGoogle Scholar
  50. Jones ES, Liu CJ, Gale MD, Hash CT, Witcombe JR (1995) Mapping quantitative trait loci for downy mildew resistance in pearl millet. Theor Appl Genet 91(3):448–456PubMedCrossRefGoogle Scholar
  51. Jones ES, Breese WA, Liu CJ, Singh SD, Shaw DS, Witcombe JR (2002) Mapping quantitative trait loci for resistance to downy mildew in pearl millet. Crop Sci 42(4):1316–1323CrossRefGoogle Scholar
  52. Kholová J, Hash CT, Kočová M, Vadez V (2011) Does a terminal drought tolerance QTL contribute to differences in ROS scavenging enzymes and photosynthetic pigments in pearl millet exposed to drought? Environ Exp Bot 71(1):99–106CrossRefGoogle Scholar
  53. Kholová J, Nepolean T, Hash CT, Supriya A, Rajaram V, Senthilvel S, Kakkera A, Yadav R, Vadez V (2012) Water saving traits co-map with a major terminal drought tolerance quantitative trait locus in pearl millet [Pennisetum glaucum (L.) R. Br.]. Mol Breed 30(3):1337–1353CrossRefGoogle Scholar
  54. Krishnamurthy L, Serraj R, Rai KN, Hash CT, Dakheel AJ (2007) Identification of pearl millet [Pennisetum glaucum (L.) R. Br.] lines tolerant to soil salinity. Euphytica 158(1–2):179–188CrossRefGoogle Scholar
  55. Kulkarni KS, Zala HN, Bosamia TC, Shukla YM, Kumar S, Fougat RS, Patel MS, Narayanan S, Joshi CG (2016) De novo transcriptome sequencing to dissect candidate genes associated with pearl millet-downy mildew (Sclerospora graminicola Sacc.) interaction. Front Plant Sci 7:847PubMedCrossRefPubMedCentralGoogle Scholar
  56. Kumar A, Manga VK (2010) Downy mildew of pearl millet. Biores Bull., Bioindica Press 4:51–58Google Scholar
  57. Kumar S, Hash CT, Thirunavukkarasu N, Singh G, Rajaram V, Rathore A, Senapathy S, Mahendrakar MD, Yadav RS, Srivastava RK (2016) Mapping quantitative trait loci controlling high iron and zinc content in self and open pollinated grains of pearl millet [Pennisetum glaucum (L.) R. Br.]. Front Plant Sci 7:1636PubMedPubMedCentralGoogle Scholar
  58. Kumar S, Hash CT, Nepolean T, Satyavathi TS, Singh G, Mahendrakar MD, Yadav R, Srivastava RK (2017) Mapping QTLs controlling flowering time and important agronomic traits in pearl millet [Pennisetum glaucum (L.) R. Br.]. Front Plant Sci 8:1731PubMedCrossRefPubMedCentralGoogle Scholar
  59. Kumari BR, Kolesnikova-Allen MA, Hash CT, Senthilvel S, Nepolean T, Kavi Kishor PB, Riera-Lizarazu O, Witcombe JR, Srivastava RK (2014) Development of a set of chromosome segment substitution lines in pearl millet [Pennisetum glaucum (L.) R. Br.]. Crop Sci 54(6):2175–2182 ISSN 0011-183XCrossRefGoogle Scholar
  60. Ladha JK, Kirk GJ, Bennett J, Peng S, Reddy CK, Reddy PM, Singh U (1998) Opportunities for increased nitrogen-use efficiency from improved lowland rice germplasm. Field Crop Res 56(1–2):41–71CrossRefGoogle Scholar
  61. Ladha JK, Pathak H, Kruprik TJ, Six J, Van Kessel C (2005) Efficiency of fertilizer nitrogen in cereal production: Retrospect and Prospects. Adv. Agron., 87:85–156Google Scholar
  62. Langridge P, Fleury D (2011) Making the most of ‘omics’ for crop breeding. Trends Biotechnol 29(1):33–40PubMedCrossRefGoogle Scholar
  63. Lardy GP, Adams DC, Klopfenstein TJ, Patterson HH (2004) Building beef cow nutritional programs with the 1996 NRC beef cattle requirements model 1 2 3. J Anim Sci 82(13_suppl):E83–E92PubMedGoogle Scholar
  64. Le Gouis J, Béghin D, Heumez E, Pluchard P (2000) Genetic differences for nitrogen uptake and nitrogen utilisation efficiencies in winter wheat. Eur J Agron 12(3–4):163–173CrossRefGoogle Scholar
  65. Liu CJ, Witcombe JR, Pittaway TS, Nash M, Hash CT, Busso CS, Gale MD (1994) An RFLP-based genetic map of pearl millet (Pennisetum glaucum). Theor Appl Genet 89(4):481–487PubMedCrossRefGoogle Scholar
  66. Lopes MS, Rebetzke GJ, Reynolds M (2014) Integration of phenotyping and genetic platforms for a better understanding of wheat performance under drought. J Exp Bot 65(21):6167–6177PubMedCrossRefGoogle Scholar
  67. Lynch JP, Chimungu JG, Brown KM (2014) Root anatomical phenes associated with water acquisition from drying soil: targets for crop improvement. J Exp Bot 65(21):6155–6166PubMedCrossRefGoogle Scholar
  68. Mahalakshmi V, Bidinger FR, Raju DS (1987) Effect of timing of water deficit on pearl millet (Pennisetum americanum). Field Crop Res 15(3–4):327–339CrossRefGoogle Scholar
  69. Mariac C, Luong V, Kapran I, Mamadou A, Sagnard F, Deu M, Chantereau J, Gerard B, Ndjeunga J, Bezançon G, Pham JL (2006) Diversity of wild and cultivated pearl millet accessions (Pennisetum glaucum [L.] R. Br.) in Niger assessed by microsatellite markers. Theor Appl Genet 114(1):49–58PubMedCrossRefGoogle Scholar
  70. Meena SK, Rakshit A, Meena VS (2016) Effect of seed bio-priming and N doses under varied soil type on nitrogen use efficiency (NUE) of wheat (Triticum aestivum L.) under greenhouse conditions. Biocatal Agric Biotechnol 6:68–75Google Scholar
  71. Monson WG, Hanna WW, Gaines TP (1986) Effects of rust on yield and quality of pearl millet forage 1. Crop Sci 26(3):637–639CrossRefGoogle Scholar
  72. Morgan RN, Ozias-Akins P, Hanna WW (1998) Seed set in an apomictic BC3 pearl millet. Int J Plant Sci 159(1):89–97CrossRefGoogle Scholar
  73. Moumouni KH, Kountche BA, Jean M, Hash CT, Vigouroux Y, Haussmann BI, Belzile F (2015) Construction of a genetic map for pearl millet, Pennisetum glaucum (L.) R. Br., using a genotyping-by-sequencing (GBS) approach. Mol Breed 35(1):5CrossRefGoogle Scholar
  74. Namai S, Toriyama K, Fukuta Y (2009) Genetic variations in dry matter production and physiological nitrogen use efficiency in rice (Oryza sativa L.) varieties. Breed Sci 59(3):269–276CrossRefGoogle Scholar
  75. Nepolean T, Blummel M, Raj AB, Rajaram V, Senthilvel S, Hash CT (2006) QTLs controlling yield and stover quality traits in pearl millet. J SAT Agric Res 2(1):4Google Scholar
  76. Ortiz-Monasterio R, Sayre KD, Rajaram S, McMahon M (1997) Genetic progress in wheat yield and nitrogen use efficiency under four nitrogen rates. Crop Sci 37(3):898–904CrossRefGoogle Scholar
  77. Pathak RR, Ahmad A, Lochab S, Raghuram N (2008) Molecular physiology of plant nitrogen use efficiency and biotechnological options for its enhancement. Curr Sci 94(11):1394–1403Google Scholar
  78. Phookan AK (1987) Studies on pearl millet smut with special reference to pathogenic variability, inheritance of resistance and chemical control. Doctoral dissertation, CCS Haryana Agricultural UniversityGoogle Scholar
  79. Prasad R (2013) Fertilizer nitrogen, food security, health and the environment. WORLD 16:14–16Google Scholar
  80. Presterl T, Seitz G, Landbeck M, Thiemt EM, Schmidt W, Geiger HH (2003) Improving nitrogen-use efficiency in european maize. Crop Sci 43(4):1259–1265CrossRefGoogle Scholar
  81. Qi X, Pittaway TS, Lindup S, Liu H, Waterman E, Padi FK, Hash CT, Zhu J, Gale MD, Devos KM (2004) An integrated genetic map and a new set of simple sequence repeat markers for pearl millet, Pennisetum glaucum. Theor Appl Genet 109(7):1485–1493PubMedCrossRefPubMedCentralGoogle Scholar
  82. Rachie KO, Majmudar JV (1980) Pearl millet. The Pennsylvania State University Press, University ParkGoogle Scholar
  83. Rai KN, Thakur RP (1995) Ergot reaction of pearl millet hybrids affected by fertility restoration and genetic resistance of parental lines. Euphytica 83(3):225–231CrossRefGoogle Scholar
  84. Rai PK, Jaiswal D, Singh RK, Gupta RK, Watal G (2008) Glycemic properties of Trichosanthes dioica leaves. Pharm Biol 46(12):894–899CrossRefGoogle Scholar
  85. Rajaram V, Varshney RK, Vadez V, Nepolean T, Senthilvel S, Kholova J, Choudhary S (2010) Development of EST resources in pearl millet and their use in development and mapping of EST-SSRs in four RIL populations. Plant and animal genomes conference, XVIII; San Diego, 9–13 Jan 2010. Abstracts of oral and poster presentations. In: The plant and animal genomes conference, XVIII, San Diego, 9–13 Jan. Abstracts of oral and poster presentations C2010 2010 (No. CIS-6163. CIMMYT.)Google Scholar
  86. Rajaram V, Nepolean T, Senthilvel S, Varshney RK, Vadez V, Srivastava RK, Shah TM, Supriya A, Kumar S, Kumari BR, Bhanuprakash A (2013) Pearl millet [Pennisetum glaucum (L.) R. Br.] consensus linkage map constructed using four RIL mapping populations and newly developed EST-SSRs. BMC Genomics 14(1):159PubMedCrossRefPubMedCentralGoogle Scholar
  87. Ramos C (1996) Effect of agricultural practices on the nitrogen losses to the environment. In: Fertilizers and environment. Springer, Dordrecht, pp 355–361CrossRefGoogle Scholar
  88. Ramya AR, Ahamed ML, Srivastava RK (2017) Genetic diversity analysis among inbred lines of pearl millet [Pennisetum glaucum (L.) R. Br.] based on grain yield and yield component characters. Int J Curr Microbiol App Sci 6(6):2240–2250CrossRefGoogle Scholar
  89. Raun WR, Johnson GV (1999) Improving nitrogen use efficiency for cereal production. Agron J 91(3):357–363CrossRefGoogle Scholar
  90. Rebetzke GJ, Condon AG, Farquhar GD, Appels R, Richards RA (2008) Quantitative trait loci for carbon isotope discrimination are repeatable across environments and wheat mapping populations. Theor Appl Genet 118(1):123–137PubMedCrossRefPubMedCentralGoogle Scholar
  91. Reddy AR, Chaitanya KV, Vivekanandan M (2004) Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants. J Plant Physiol 161(11):1189–1202CrossRefGoogle Scholar
  92. Rehman AU, Malhotra RS, Bett K, Tar’an B, Bueckert R, Warkentin TD (2011) Mapping QTL associated with traits affecting grain yield in chickpea (Cicer arietinum L.) under terminal drought stress. Crop Sci 51(2):450–463CrossRefGoogle Scholar
  93. Roberts AD, Prince SD, Jantz CA, Goetz SJ (2009) Effects of projected future urban land cover on nitrogen and phosphorus runoff to Chesapeake Bay. Ecol Eng 35(12):1758–1772CrossRefGoogle Scholar
  94. Sehgal D, Rajpal VR, Raina SN, Sasanuma T, Sasakuma T (2009) Assaying polymorphism at DNA sequence level for new and novel genetic diversity diagnostics of the safflower (Carthamus tinctorius L.). Genetica 135:457–470.  https://doi.org/10.1007/s10709-008-9292-4
  95. Sehgal D, Rajaram V, Armstead IP, Vadez V, Yadav YP, Hash CT, Yadav RS (2012) Integration of gene-based markers in a pearl millet genetic map for identification of candidate genes underlying drought tolerance quantitative trait loci. BMC Plant Biol 12(1):9PubMedCrossRefPubMedCentralGoogle Scholar
  96. Sehgal D, Skot L, Singh R, Srivastava RK, Das SP, Taunk J, Sharma PC, Pal R, Raj B, Hash CT, Yadav RS (2015) Exploring potential of pearl millet germplasm association panel for association mapping of drought tolerance traits. PLoS One 10(5):e0122165PubMedCrossRefPubMedCentralGoogle Scholar
  97. Senthilvel S, Jayashree B, Mahalakshmi V, Kumar PS, Nakka S, Nepolean T, Hash CT (2008) Development and mapping of simple sequence repeat markers for pearl millet from data mining of expressed sequence tags. BMC Plant Biol 8(1):119PubMedCrossRefPubMedCentralGoogle Scholar
  98. Senthilvel S, Nepolean T, Supriya A, Rajaram V, Kumar S, Hash CT, et al (2010) Development of a molecular linkage map of pearl millet integrating DArT and SSR markers. In: Proceedings of the plant and animal genome 18 conference, San Diego, 9–13Google Scholar
  99. Serba DD, Yadav RS (2016) Genomic tools in pearl millet breeding for drought tolerance: status and prospects. Front Plant Sci 7:1724PubMedCrossRefPubMedCentralGoogle Scholar
  100. Serraj R, Hash CT, Rizvi SM, Sharma A, Yadav RS, Bidinger FR (2005) Recent advances in marker-assisted selection for drought tolerance in pearl millet. Plant Prod Sci 8(3):334–337CrossRefGoogle Scholar
  101. Sharma R, Thakur RP, Rai KN, Gupta SK, Rao VP, Rao AS, Kumar S (2009) Identification of rust resistance in hybrid parents and advanced breeding lines of pearl millet. J SAT Agric Res 7:1–4Google Scholar
  102. Sharma PC, Sehgal D, Singh D, Singh G, Yadav RS (2011) A major terminal drought tolerance QTL of pearl millet is also associated with reduced salt uptake and enhanced growth under salt stress. Mol Breed 27(2):207–222CrossRefGoogle Scholar
  103. Sharma R, Upadhyaya HD, Manjunatha SV, Rai KN, Gupta SK, Thakur RP (2013) Pathogenic variation in the pearl millet blast pathogen Magnaporthe grisea and identification of resistance to diverse pathotypes. Plant Dis 97(2):189–195CrossRefGoogle Scholar
  104. Sharma PC, Singh D, Sehgal D, Singh G, Hash CT, Yadav RS (2014) Further evidence that a terminal drought tolerance QTL of pearl millet is associated with reduced salt uptake. Environ Exp Bot 102:48–57PubMedCrossRefPubMedCentralGoogle Scholar
  105. Shivhare R, Lata C (2016) Selection of suitable reference genes for assessing gene expression in pearl millet under different abiotic stresses and their combinations. Sci Rep 6:23036PubMedCrossRefPubMedCentralGoogle Scholar
  106. Shivhare R, Lata C (2017) Exploration of genetic and genomic resources for abiotic and biotic stress tolerance in pearl millet. Front Plant Sci 7:2069PubMedCrossRefPubMedCentralGoogle Scholar
  107. Siddaiah CN, Satyanarayana NR, Mudili V, Gupta VK, Gurunathan S, Rangappa S, Huntrike SS, Srivastava RK (2017) Elicitation of resistance and associated defense responses in Trichoderma hamatum induced protection against pearl millet downy mildew pathogen. Sci Rep 7:43991PubMedCrossRefPubMedCentralGoogle Scholar
  108. Singh SD (1990) Sources of resistance to downy mildew and rust in pearl millet. Plant Dis 74(11):871–874CrossRefGoogle Scholar
  109. Singh SD (1995) Downy mildew of pearl millet. Plant Dis 79(6):545–550CrossRefGoogle Scholar
  110. Singh SD, Singh GO (1987) Resistance to downy mildew in pearl millet hybrid NHB-3. Indian Phytopathol 40(2):178–180Google Scholar
  111. Singh SD, King SB, Werder J (1993) Downy mildew disease of pearl millet, Information bulletin no 37. International Crops Research Institute for the Semi-Arid Tropics, PatancheruGoogle Scholar
  112. Singh SD, Wilson JP, Navi SS, Talukdar BS, Hess DE, Reddy KN (1997) Screening techniques and sources of resistance to downy mildew and rust in pearl millet, ICRISAT, Patancheru, Information Bulletin 1997 No.48 pp.138 pp. ref.44Google Scholar
  113. Smil V (2001) Feeding the world: a challenge for the twenty-first century. MIT Press, Cambridge, MAGoogle Scholar
  114. Souci SW, Fachmann W, Kraut H (2000) Food composition and nutrition tables, 6th edn. Medpharm Scientific Publishers, StuttgartGoogle Scholar
  115. Stomph TJ (1990) Seedling establishment in pearl millet (Pennisetum glaucum (L.) R. Br.): the influence of genotype, physiological seed quality, soil temperature and soil water. Doctoral dissertation, University of ReadingGoogle Scholar
  116. Tapsoba H, Wilson JP (1996) Pathogenic variation in Puccinia substriata var. indica in the southeastern United States and screening for resistance in pearl millet germ plasm. Plant Dis (USA) 80:395–397Google Scholar
  117. Thakur RP, King SB (1988) Smut disease of pearl millet. International Crops Research Institute for the Semi-Arid Tropics, Patancheru, IndiaGoogle Scholar
  118. Thakur RP, Rai KN (2003) Pearl millet ergot research: advances and implications. In: Leslie J.F., editor. Sorghum and Millets Diseases. Iowa State Press; Ames, IA, USA: 2003. pp. 57–64.Google Scholar
  119. Thakur RP, Williams RJ (1980) Pollination effects on pearl millet ergot. Phytopathology 70(2):80–84CrossRefGoogle Scholar
  120. Thakur RP, Shetty HS, Khairwal IS (2006) Pearl millet downy mildew research in India: progress and perspectives. Int Sorghum Millets Newsl 47:125–130Google Scholar
  121. Thakur RP, Rai KN, Khairwal IS, Mahala RS (2008) Strategy for downy mildew resistance breeding in pearl millet in India. J SAT Agric Res 6:1–1Google Scholar
  122. Thakur RP, Rao VP, Sharma R (2011) Influence of dosage, storage time and temperature on efficacy of metalaxyl-treated seed for the control of pearl millet downy mildew. Eur J Plant Pathol 129(2):353–359CrossRefGoogle Scholar
  123. Tilman D (1999) The ecological consequences of changes in biodiversity: a search for general principles. Ecology 80(5):1455–1474Google Scholar
  124. Tilman D, Balzer C, Hill J, Befort BL (2011) Global food demand and the sustainable intensification of agriculture. Proc Natl Acad Sci 108(50):20260–20264PubMedCrossRefPubMedCentralGoogle Scholar
  125. Tuberosa R (2012) Phenotyping for drought tolerance of crops in the genomics era. Front Physiol 3:347PubMedCrossRefPubMedCentralGoogle Scholar
  126. Vadez V (2014) Root hydraulics: the forgotten side of roots in drought adaptation. Field Crop Res 165:15–24CrossRefGoogle Scholar
  127. Vadez V, Hash T, Kholova J (2012) Phenotyping pearl millet for adaptation to drought. Front Physiol 3:386PubMedCrossRefPubMedCentralGoogle Scholar
  128. Vadez V, Kholová J, Yadav RS, Hash CT (2013) Small temporal differences in water uptake among varieties of pearl millet (Pennisetum glaucum (L.) R. Br.) are critical for grain yield under terminal drought. Plant Soil 371(1–2):447–462CrossRefGoogle Scholar
  129. Van Oosterom EJ, Weltzien E, Yadav OP, Bidinger FR (2006) Grain yield components of pearl millet under optimum conditions can be used to identify germplasm with adaptation to arid zones. Field Crop Res 96(2–3):407–421CrossRefGoogle Scholar
  130. Várallyay G (1994) Climate change, soil salinity and alkalinity. In: Soil responses to climate change. Springer, Berlin, Heidelberg, pp 39–54CrossRefGoogle Scholar
  131. Varshney RK, Shi C, Thudi M, Mariac C, Wallace J, Qi P, Zhang H, Zhao Y, Wang X, Rathore A, Srivastava RK (2017) Pearl millet genome sequence provides a resource to improve agronomic traits in arid environments. Nat Biotechnol 35(10):969PubMedCrossRefGoogle Scholar
  132. Volk RJ (1997) Unidirectional fluxes of nitrate into and out of maize roots: measurement and regulation by prior nitrate nutrition. Plant Sci 123(1–2):1–7CrossRefGoogle Scholar
  133. Wells HD, Burton GW, Hennen JF (1973) Puccinia substriata var. indica on pearl millet in the southeast. Plant Dis Rep. 57:262Google Scholar
  134. Wilson JP (1993) Identification of virulence in Puccinia-substriata var indica to Rr1 in pearl-millet. Plant Dis 77(1):100CrossRefGoogle Scholar
  135. Wilson JP (1994) Field and greenhouse evaluation of pearl millet for partial resistance to Puccinia substriata var. indica. Plant Dis (USA). 78(12):1202Google Scholar
  136. Wilson JP, Gates RN (1993) Forage yield losses in hybrid pearl millet due to leaf blight caused primarily by Pyricularia grisea. Phytopathology 83(7):739–744CrossRefGoogle Scholar
  137. Wilson JP, Wells HD, Burton GW (1989) Inheritance of resistance to Pyricularia grisea in pearl millet accessions from Burkina Faso and inbred Tift 85DB. J Hered 80(6):499–501CrossRefGoogle Scholar
  138. Wilson JP, Gates RN, Hanna WW (1991) Effect of rust on yield and digestibility of pearl millet forage. Phytopathology 81(2):233–236CrossRefGoogle Scholar
  139. Wilson JP, Hanna WW, Gascho GJ (1996) Pearl millet grain yield loss from rust infection. J Prod Agric 9(4):543–545CrossRefGoogle Scholar
  140. Wilson JP, Gates RN, Panwar MS (2001) Dynamic multiline population approach to resistance gene management. Phytopathology 91(3):255–260PubMedCrossRefGoogle Scholar
  141. Wilson JP, Jurjevic Z, Hanna WW, Wilson DM, Potter TL, Coy AE (2006) Host-specific variation in infection by toxigenic fungi and contamination by mycotoxins in pearl millet and corn. Mycopathologia 161(2):101–107PubMedCrossRefGoogle Scholar
  142. Yadav OP (2008) Performance of landraces, exotic elite populations and their crosses in pearl millet (Pennisetum glaucum) in drought and non-drought conditions. Plant Breed 127(2):208–210CrossRefGoogle Scholar
  143. Yadav OP, Rai KN (2013) Genetic improvement of pearl millet in India. Agric Res 2(4):275–292CrossRefGoogle Scholar
  144. Yadav RS, Hash CT, Bidinger FR, Cavan GP, Howarth CJ (2002) Quantitative trait loci associated with traits determining grain and stover yield in pearl millet under terminal drought-stress conditions. Theor Appl Genet 104(1):67–83PubMedCrossRefGoogle Scholar
  145. Yadav R, Bidinger F, Hash C, Yadav Y, Yadav O, Bhatnagar S, Howarth C (2003) Mapping and characterisation of QTL× E interactions for traits determining grain and stover yield in pearl millet. Theor Appl Genet 106(3):512–520PubMedCrossRefGoogle Scholar
  146. Yadav RS, Hash CT, Bidinger FR, Devos KM, Howarth CJ (2004) Genomic regions associated with grain yield and aspects of post-flowering drought tolerance in pearl millet across stress environments and tester background. Euphytica 136(3):265–277CrossRefGoogle Scholar
  147. Yadav OP, Mitchell SE, Zamora A, Fulton TM, Kresovich S (2007) Development of new simple sequence repeat markers for pearl millet. J SAT Agric Res 3(1):34Google Scholar
  148. Yadav OP, Mitchell SE, Fulton TM, Kresovich S (2008) Transferring molecular markers from sorghum, rice and other cereals to pearl millet and identifying polymorphic markers. J SAT Agr Res http://www.icrisat.org/journal/Volume6/Sorgum_Millet/OP_Yadav.pdf.
  149. Yadav RS, Sehgal D, Vadez V (2011) Using genetic mapping and genomics approaches in understanding and improving drought tolerance in pearl millet. J Exp Bot 62(2):397–408PubMedCrossRefGoogle Scholar
  150. Yadav CB, Muthamilarasan M, Pandey G, Khan Y, Prasad M (2014) Development of novel microRNA-based genetic markers in foxtail millet for genotyping applications in related grass species. Mol Breed 34(4):2219–2224CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.International Crops Research Institute for the Semi-Arid Tropics (ICRISAT)PatancheruIndia

Personalised recommendations