Distributed Lagrange Multiplier for Fluid-Structure Interactions

  • Daniele BoffiEmail author
  • Frédéric Hecht
  • Olivier Pironneau
Part of the SEMA SIMAI Springer Series book series (SEMA SIMAI, volume 15)


In this paper we make preliminary numerical tests to assess the performance of the scheme introduced in Boffi et al. (SIAM J Numer Anal 53(6):2584–2604, 2015) and analyzed in Boffi and Gastaldi (Numer Math 135(3):711–732, 2017) for the approximation of fluid-structure interaction problems. We show how to implement the scheme within the FreeFem++ framework (Hecht, J Numer Math 20(3–4):251–265, 2012) and validate our code with respect to some known problems and benchmarks. The main conclusion is that a simple implementation can provide quite accurate results for non trivial applications.


  1. 1.
    Boffi, D., Gastaldi, L.: A fictitious domain approach with Lagrange multiplier for fluid-structure interactions. Numer. Math. 135(3), 711–732 (2017)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Boffi, D., Gastaldi, L., Heltai, L., Peskin, C.S.: On the hyper-elastic formulation of the immersed boundary method. Comput. Methods Appl. Mech. Eng. 197(25–28), 2210–2231 (2008)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Boffi, D., Brezzi, F., Fortin, M.: Mixed Finite Element Methods and Applications. Springer Series in Computational Mathematics, vol. 44. Springer, New York (2013)CrossRefGoogle Scholar
  4. 4.
    Boffi, D., Cavallini, N., Gastaldi, L.: The finite element immersed boundary method with distributed Lagrange multiplier. SIAM J. Numer. Anal. 53(6), 2584–2604 (2015)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Dunne, Th., Rannacher, R., Richter, Th.: Numerical simulation of fluid-structure interaction based on monolithic variational formulations. In: Fundamental Trends in Fluid-Structure Interaction. Contemporary Challenges in Mathematical Fluid Dynamics and its Applications, vol. 1, pp. 1–75. World Scientific Publishing, Hackensack (2010)Google Scholar
  6. 6.
    Girault, V., Glowinski, R.: Error analysis of a fictitious domain method applied to a Dirichlet problem. Jpn. J. Ind. Appl. Math. 12(3), 487–514 (1995)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Hecht, F.: New development in FreeFem++. J. Numer. Math. 20(3–4), 251–265 (2012)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Hecht, F., Pironneau, O.: An energy stable monolithic Eulerian fluid-structure finite element method. Int. J. Numer. Methods Fluids 85(7), 430–446 (2017)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Peskin, C.S.: The immersed boundary method. Acta Numer. 11, 479–517 (2002)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Pironneau, O.: On the transport-diffusion algorithm and its applications to the Navier-Stokes equations. Numer. Math. 38(3), 309–332 (1981/82)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Wang, Y., Jimack, P.K., Walkley, M.A.: A one-field monolithic fictitious domain method for fluid–structure interactions. Comput. Methods Appl. Mech. Eng. 317, 1146–1168 (2017)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Zhao, H., Freund, J.B., Moser, R.D.: A fixed-mesh method for incompressible flow-structure systems with finite solid deformations. J. Comput. Phys. 227(6), 3114–3140 (2008)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Daniele Boffi
    • 1
    Email author
  • Frédéric Hecht
    • 2
  • Olivier Pironneau
    • 2
  1. 1.Dipartimento di Matematica “F. Casorati”University of PaviaPaviaItaly
  2. 2.Sorbonne UniversitésUPMC (Paris VI), Laboratoire Jacques-Louis LionsParisFrance

Personalised recommendations