Advertisement

Forward Injective Finite Automata: Exact and Random Generation of Nonisomorphic NFAs

  • Miguel Ferreira
  • Nelma Moreira
  • Rogério Reis
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10952)

Abstract

We define the class of forward injective finite automata (FIFA) and study some of their properties. Each FIFA has a unique canonical representation up to isomorphism. Using this representation an enumeration is given and an efficient uniform random generator is presented. We provide a conversion algorithm from a nondeterministic finite automaton or regular expression into an equivalent FIFA. Finally, we present some experimental results comparing the size of FIFA with other automata.

References

  1. 1.
    Almeida, M., Moreira, N., Reis, R.: Enumeration and generation with a string automata representation. Theor. Comput. Sci. 387(2), 93–102 (2007)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Antimirov, V.M.: Partial derivatives of regular expressions and finite automaton constructions. Theor. Comput. Sci. 155(2), 291–319 (1996)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Bassino, F., Nicaud, C.: Enumeration and random generation of accessible automata. Theor. Comput. Sci. 381(1–3), 86–104 (2007)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Champarnaud, J.M., Paranthoën, T.: Random generation of DFAs. Theor. Comput. Sci. 330(2), 221–235 (2005)MathSciNetCrossRefGoogle Scholar
  5. 5.
    FAdo, P.: FAdo: tools for formal languages manipulation. http://fado.dcc.up.pt. Accessed 13 2018
  6. 6.
    Héam, P.-C., Joly, J.-L.: On the uniform random generation of non deterministic automata up to isomorphism. In: Drewes, F. (ed.) CIAA 2015. LNCS, vol. 9223, pp. 140–152. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-22360-5_12CrossRefzbMATHGoogle Scholar
  7. 7.
    Knuth, D.E.: The Art of Computer Programming. Seminumerical Algorithms, vol. 2, 2nd edn. Addison Wesley, Boston (1981)Google Scholar
  8. 8.
    Levin, D.A., Peres, Y., Wilmer, E.L.: Markov Chain and Mixing Times. American Mathematical Society (2008). http://pages.uoregon.edu/dlevin/MARKOV/markovmixing.pdf
  9. 9.
    Lothaire, M.: Applied Combinatorics on Words, vol. 105. Encyclopedia of Mathematics and its Applications. Cambridge University Press, New York (2005)Google Scholar
  10. 10.
    Nicaud, C.: Random deterministic automata. In: Csuhaj-Varjú, E., Dietzfelbinger, M., Ésik, Z. (eds.) MFCS 2014, Part I. LNCS, vol. 8634, pp. 5–23. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-662-44522-8_2CrossRefGoogle Scholar

Copyright information

© IFIP International Federation for Information Processing 2018

Authors and Affiliations

  1. 1.CMUP and DCCFaculdade de Ciências da Universidade do PortoPortoPortugal

Personalised recommendations