Advertisement

Finite Automata with Undirected State Graphs

  • Martin Kutrib
  • Andreas Malcher
  • Christian Schneider
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10952)

Abstract

We investigate finite automata whose state graphs are undirected. This means that for any transition from state p to q consuming some letter a from the input there exists a symmetric transition from state q to p consuming a letter a as well. So, the corresponding language families are subregular and, in particular in the deterministic case, subreversible. In detail, we study the operational descriptional complexity of deterministic and nondeterministic undirected finite automata. To this end, the different types of automata on alphabets with few letters are characterized. Then the operational state complexity of the Boolean operations as well as the operations concatenation and iteration is investigated, where tight upper and lower bounds are derived for unary as well as arbitrary alphabets under the condition that the corresponding language classes are closed under the operation considered.

References

  1. 1.
    Gajardo, A., Kari, J., Moreira, A.: On time-symmetry in cellular automata. J. Comput. Syst. Sci. 78, 1115–1126 (2012)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Gao, Y., Moreira, N., Reis, R., Yu, S.: A survey on operational state complexity. J. Autom. Lang. Comb. 21, 251–310 (2016)MathSciNetMATHGoogle Scholar
  3. 3.
    Holzer, M., Jakobi, S., Kutrib, M.: Minimal reversible deterministic finite automata. In: Potapov, I. (ed.) DLT 2015. LNCS, vol. 9168, pp. 276–287. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-21500-6_22CrossRefGoogle Scholar
  4. 4.
    Holzer, M., Kutrib, M.: Reversible nondeterministic finite automata. In: Phillips, I., Rahaman, H. (eds.) RC 2017. LNCS, vol. 10301, pp. 35–51. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-59936-6_3CrossRefMATHGoogle Scholar
  5. 5.
    Kutrib, M.: Reversible and irreversible computations of deterministic finite-state devices. In: Italiano, G.F., Pighizzini, G., Sannella, D.T. (eds.) MFCS 2015. LNCS, vol. 9234, pp. 38–52. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-48057-1_3CrossRefGoogle Scholar
  6. 6.
    Kutrib, M., Worsch, T.: Time-symmetric machines. In: Dueck, G.W., Miller, D.M. (eds.) RC 2013. LNCS, vol. 7948, pp. 168–181. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-38986-3_14CrossRefGoogle Scholar
  7. 7.
    Landauer, R.: Irreversibility and heat generation in the computing process. IBM J. Res. Dev. 5, 183–191 (1961)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Lavado, G.J., Pighizzini, G., Prigioniero, L.: Weakly and strongly irreversible regular languages. In: Csuhaj-Varjú, E., Dömösi, P., Vaszil, G. (eds.) Automata and Formal Languages (AFL 2017). EPTCS, vol. 252, pp. 143–156 (2017)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Yu, S.: Regular languages. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of Formal Languages, Chap. 2, vol. 1, pp. 41–110. Springer, Heidelberg (1997).  https://doi.org/10.1007/978-3-642-59136-5_2CrossRefGoogle Scholar
  10. 10.
    Yu, S.: State complexity of regular languages. J. Autom. Lang. Comb. 6, 221–234 (2001)MathSciNetMATHGoogle Scholar

Copyright information

© IFIP International Federation for Information Processing 2018

Authors and Affiliations

  • Martin Kutrib
    • 1
  • Andreas Malcher
    • 1
  • Christian Schneider
    • 1
  1. 1.Institut für InformatikUniversität GiessenGiessenGermany

Personalised recommendations