Advertisement

Error-Free Affine, Unitary, and Probabilistic OBDDs

  • Rishat Ibrahimov
  • Kamil Khadiev
  • Krišjānis Prūsis
  • Abuzer Yakaryılmaz
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10952)

Abstract

We introduce the affine OBDD model and show that zero-error affine OBDDs can be exponentially narrower than bounded-error unitary and probabilistic OBDDs on certain problems. Moreover, we show that Las Vegas unitary and probabilistic OBDDs can be quadratically narrower than deterministic OBDDs. We also obtain the same results for the automata versions of these models.

Keywords

OBDDs Affine models Quantum and probabilistic computation Zero-error Las Vegas computation Succinctness 

Notes

Acknowledgements

We thank Evgenijs Vihrovs (University of Latvia) for his helpful discussions and anonymous reviewers for their very helpful comments.

The work is partially supported by ERC Advanced Grant MQC, Latvian State Research Programme NeXIT project No. 1. The work is also performed according to the Russian Government Program of Competitive Growth of Kazan Federal University. The research on Las-Vegas OBDDs (Sect. 5) is supported by Russian Science Foundation Grant 17-71-10152

References

  1. 1.
    Ablayev, F., Gainutdinova, A.: Complexity of quantum uniform and nonuniform automata. In: De Felice, C., Restivo, A. (eds.) DLT 2005. LNCS, vol. 3572, pp. 78–87. Springer, Heidelberg (2005).  https://doi.org/10.1007/11505877_7CrossRefGoogle Scholar
  2. 2.
    Ablayev, F., Gainutdinova, A., Khadiev, K., Yakaryılmaz, A.: Very narrow quantum OBDDs and width hierarchies for classical OBDDs. Lobachevskii J. Math. 37(6), 670–682 (2016)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Ablayev, F.: Randomization and nondeterminism are incomparable for ordered read-once branching programs. In: ECCC (021) (1997)CrossRefGoogle Scholar
  4. 4.
    Ablayev, F., Gainutdinova, A., Karpinski, M., Moore, C., Pollett, C.: On the computational power of probabilistic and quantum branching program. Inf. Comput. 203(2), 145–162 (2005)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Ablayev, F., Gainutdinova, A., Khadiev, K., Yakaryılmaz, A.: Very narrow quantum OBDDs and width hierarchies for classical OBDDs. In: Jürgensen, H., Karhumäki, J., Okhotin, A. (eds.) DCFS 2014. LNCS, vol. 8614, pp. 53–64. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-09704-6_6CrossRefGoogle Scholar
  6. 6.
    Ablayev, F., Karpinski, M.: On the power of randomized branching programs. In: Meyer, F., Monien, B. (eds.) ICALP 1996. LNCS, vol. 1099, pp. 348–356. Springer, Heidelberg (1996).  https://doi.org/10.1007/3-540-61440-0_141CrossRefGoogle Scholar
  7. 7.
    Ambainis, A., Watrous, J.: Two-way finite automata with quantum and classical states. Theor. Comput. Sci. 287(1), 299–311 (2002)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Ambainis, A., Yakaryılmaz, A.: Automata and quantum computing. Technical report 1507.01988, arXiv (2015)Google Scholar
  9. 9.
    Belovs, A., Montoya, J.A., Yakaryılmaz, A.: On a conjecture by Christian Choffrut. Int. J. Found. Comput. Sci. 28(5), 483–502 (2017)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Díaz-Caro, A., Yakaryılmaz, A.: Affine computation and affine automaton. In: Kulikov, A.S., Woeginger, G.J. (eds.) CSR 2016. LNCS, vol. 9691, pp. 146–160. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-34171-2_11CrossRefMATHGoogle Scholar
  11. 11.
    \(\check{\rm D}\)uriš, P., Hromkovič, J., Rolim, J.D.P., Schnitger, G.: Las Vegas versus determinism for one-way communication complexity, finite automata, and polynomial-time computations. In: Reischuk, R., Morvan, M. (eds.) STACS 1997. LNCS, vol. 1200, pp. 117–128. Springer, Heidelberg (1997).  https://doi.org/10.1007/BFb0023453
  12. 12.
    Gainutdinova, A.F.: Comparative complexity of quantum and classical OBDDs for total and partial functions. Russ. Math. 59(11), 26–35 (2015)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Gainutdinova, A., Yakaryılmaz, A.: Nondeterministic unitary OBDDs. In: Weil, P. (ed.) CSR 2017. LNCS, vol. 10304, pp. 126–140. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-58747-9_13CrossRefGoogle Scholar
  14. 14.
    Hirvensalo, M., Moutot, E., Yakaryılmaz, A.: On the computational power of affine automata. In: Drewes, F., Martín-Vide, C., Truthe, B. (eds.) LATA 2017. LNCS, vol. 10168, pp. 405–417. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-53733-7_30CrossRefMATHGoogle Scholar
  15. 15.
    Hirvensalo, M., Seibert, S.: Lower bounds for Las Vegas automata by information theory. RAIRO Theor. Inform. Appl. 37(1), 39–49 (2003)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Hromkovič, J., Schnitger, G.: On the power of Las Vegas for one-way communication complexity, OBDDs, and finite automata. Inf. Comput. 169(2), 284–296 (2001)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Khadiev, K.: On the hierarchies for deterministic, nondeterministic and probabilistic ordered read-k-times branching programs. Lobachevskii J. Math. 37(6), 682–703 (2016)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Khadiev, K., Khadieva, A.: Reordering method and hierarchies for quantum and classical ordered binary decision diagrams. In: Weil, P. (ed.) CSR 2017. LNCS, vol. 10304, pp. 162–175. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-58747-9_16CrossRefMATHGoogle Scholar
  19. 19.
    Klauck, H.: On quantum and probabilistic communication: Las Vegas and one-way protocols. In: STOC 2000, pp. 644–651 (2000)Google Scholar
  20. 20.
    Kushilevitz, E., Nisan, N.: Communication Complexity. Cambridge University Press, New York (1997)CrossRefGoogle Scholar
  21. 21.
    Moore, C., Crutchfield, J.P.: Quantum automata and quantum grammars. Theor. Comput. Sci. 237(1–2), 275–306 (2000)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Sauerhoff, M.: Quantum vs. classical read-once branching programs. In: Complexity of Boolean Functions, vol. 06111, Dagstuhl Seminar Proceedings, Internationales Begegnungs und Forschungszentrum für Informatik (2006)Google Scholar
  23. 23.
    Sauerhoff, M., Sieling, D.: Quantum branching programs and space-bounded nonuniform quantum complexity. Theor. Comput. Sci. 334(1), 177–225 (2005)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Savickỳ, P., Žák, S.: A read-once lower bound and a (1,+ \(k\))-hierarchy for branching programs. Theor. Comput. Sci. 238(1), 347–362 (2000)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Say, A.C.C., Yakaryılmaz, A.: Quantum finite automata: a modern introduction. In: Calude, C.S., Freivalds, R., Kazuo, I. (eds.) Computing with New Resources. LNCS, vol. 8808, pp. 208–222. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-13350-8_16CrossRefMATHGoogle Scholar
  26. 26.
    Villagra, M., Yakaryılmaz, A.: Language recognition power and succinctness of affine automata. Nat. Comput. 17(2), 283–293 (2018).  https://doi.org/10.1007/s11047-017-9652-zMathSciNetCrossRefGoogle Scholar
  27. 27.
    Villagra, M., Yakaryılmaz, A.: Language recognition power and succinctness of affine automata. In: Amos, M., Condon, A. (eds.) UCNC 2016. LNCS, vol. 9726, pp. 116–129. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-41312-9_10CrossRefMATHGoogle Scholar
  28. 28.
    Wegener, I.: Branching Programs and Binary Decision Diagrams: Theory and Applications. SIAM, Philadelphia (2000)Google Scholar
  29. 29.
    Nakanishi, M., Khadiev, K., Prusis, K., Vihrovs, J., Yakaryilmaz, A.: Exact affine counter automata. Electron. Proc. Theoret. Comput. Sci. (EPTCS) 252, 205–218 (2017). https://doi.org/10.4204/EPTCS.252.20MathSciNetCrossRefGoogle Scholar

Copyright information

© IFIP International Federation for Information Processing 2018

Authors and Affiliations

  • Rishat Ibrahimov
    • 1
    • 3
  • Kamil Khadiev
    • 1
    • 2
    • 3
  • Krišjānis Prūsis
    • 2
  • Abuzer Yakaryılmaz
    • 2
  1. 1.Kazan Federal UniversityKazanRussia
  2. 2.Center for Quantum Computer ScienceUniversity of LatviaRīgaLatvia
  3. 3.Smart Quantum Technologies Ltd.KazanRussia

Personalised recommendations