Properties of Micro- and Nano-Reinforced Biopolymers for Food Applications

  • Sofía Collazo-Bigliardi
  • Rodrigo Ortega-Toro
  • Amparo Chiralt


Food packaging implies a significant consumption of different materials, of which plastics are the second most widely used. So, the development of biopolymers for food packaging applications is critically important. Although several biopolymers are available for different applications, they have some drawbacks and their functional properties need to be adapted for food packaging requirements. The incorporation of micro- and nano-fillers into the biopolymer matrix has proven to be an alternative means of improving their mechanical and barrier properties. In composites, the polymer forms the continuous matrix while the dispersed filler phase helps to positively modify the functional characteristics of the material. Different kinds of fillers have been used which modify the material characteristics as a function of their content and filler-matrix interactions. The particle size and shape, the amount and distribution and the chemical nature of the fillers are key factors in the final properties of the composite. In general, thermomechanical processes with high shearing forces and temperatures for the required time are needed to guarantee the convenient dispersion of the filler within the polymer matrix. In this chapter, the different kinds of fillers used in biopolymer composites have been summarized. The relevant surface properties and the changes induced by fillers on the mechanical, barrier and thermal properties of micro- and nano-composites have been discussed, with emphasis on food packaging applications. The processing techniques, formulation and final structure of materials have also been reviewed, as well as the influence of the fillers on the biodegradation behaviour of composites.


Biodegradability Functional properties Micro- and nanocomposites Thermomechanical process 



Atomic Force Microscopy


Ag nanoparticles


Acetyltributyl citrate


Bacterial cellulose nanowhiskers


Chitin nanocrystals


Carboxymethyl cellulose


Cellulose nanocrystals


Cellulose nanofibrils


Differential Scanning Calorimetry


Field emission scanning electron microscopy


Fourier-transform infrared spectroscopy


Glycerol triacetate


(Hidroxypropil)metil cellulose




Microcrystalline cellulose




Nano-crystalline cellulose


Poly(butylene succinate)


Poly(butylene adipate co-terephthalate)




Polyethylen glycol








Polyhydroxybutyrate with 12 mol% of valerate and containing 10 wt% of the plasticizer citric ester


Poly(lactic) acid




Poly(vinyl alcohol)


Scanning Electron Microscopy


Thermoplastic corn starch


Thermoplastic starch


Waxy starch nanocrystals



The authors thank the Ministerio de Economía y Competitividad (Spain) for the financial support provided through Project AGL2016-76699-R.


  1. Abdollahi M, Alboofetileh M, Rezaei M et al (2013) Comparing physico-mechanical and thermal properties of alginate nanocomposite films reinforced with organic and/or inorganic nanofillers. Food Hydrocoll 32:416–424CrossRefGoogle Scholar
  2. Abdul Khalil HP, Davoudpour Y, Saurabh C et al (2016) A review on nanocellulosic fibres as new material for sustainable packaging: process and applications. Renew Sust Energ Rev 64:823–836CrossRefGoogle Scholar
  3. Alves JS, dos Reis KC, Menezes EGT et al (2015) Effect of cellulose nanocrystals and gelatin in corn starch plasticized films. Carbohydr Polym 115:215–222CrossRefPubMedGoogle Scholar
  4. Arrieta M, Peltzer M, López J et al (2014a) Functional properties of sodium and calcium caseinate antimicrobial active films containing carvacrol. J Food Eng 121:94–101CrossRefGoogle Scholar
  5. Arrieta MP, Fortunati E, Dominici F et al (2014b) Multifunctional PLA–PHB/cellulose nanocrystal films: processing, structural and thermal properties. Carbohydr Polym 107:16–24CrossRefPubMedGoogle Scholar
  6. Arrieta MP, López J, Kenny JM et al (2015) Biodegradable electrospun bionanocomposite fibers based on plasticized PLA–PHB blends reinforced with cellulose nanocrystals. Ind Crop Prod 96:290–301Google Scholar
  7. ASTM (2003) Standard test method for determining aerobic biodegradation of plastic materials under controlled composting conditions, incorporating thermophilic temperatures. Standards designations: D5338. In: Annual book of ASTM standards. American Society for Testing and Materials, Philadelphia, PAGoogle Scholar
  8. Azeredo HMC (2009) Nanocomposites for food packaging applications. Food Res Int 42:1240–1253CrossRefGoogle Scholar
  9. Azeredo HMC, Rosa MF, Mattoso LHC (2017) Nanocellulose in bio-based food packaging applications. Ind Crop Prod 97:664–671CrossRefGoogle Scholar
  10. Bera A, Dubey S, Bhayani K et al (2015) Microbial synthesis of polyhydroxyalkanoate using seaweed-derived crude levulinic acid as co-nutrient. Int J Biol Macromol 72:487–494CrossRefPubMedGoogle Scholar
  11. Berthet MA, Angellier-Coussy H, Chea V et al (2015) Sustainable food packaging: valorising wheat straw fibres for tuning PHBV-based composites properties. Compos Part A Appl Sci Manuf 72:139–147CrossRefGoogle Scholar
  12. Bonilla J, Fortunati E, Vargas M (2013) Effects of chitosan on the physicochemical and antimicrobial properties of PLA films. J Food Eng 119(2):236–243CrossRefGoogle Scholar
  13. Boonterm M, Sunyadeth S, Dedpakdee S et al (2015) Characterization and comparison of cellulose fiber extraction from rice straw by chemical treatment and thermal stem explosion. J Clean Prod 134:592–599CrossRefGoogle Scholar
  14. Boumail A, Salmieri S, Klimas E et al (2013) Characterization of trilayer antimicrobial diffusion films (ADFs) based on methylcellulose−polycaprolactone composites. J Agric Food Chem 61:811–821CrossRefPubMedGoogle Scholar
  15. Brinchi L, Cotana F, Fortunati E et al (2013) Production of nanocrystalline cellulose from lignocellulosic biomass: technology and applications. Carbohydr Polym 94:154–169CrossRefPubMedGoogle Scholar
  16. Cano A, Fortunati E, Cháfer M et al (2015) Effect of cellulose nanocrystals on the properties of pea starch–poly(vinyl alcohol) blend films. J Mater Sci 50:6979–6992CrossRefGoogle Scholar
  17. Cano A, Cháfer M, Chiralt A et al (2016) Biodegradation behaviour of starch-PVA films as affected by the incorporation of different antimicrobials. Polym Degrad Stab 132:11–20CrossRefGoogle Scholar
  18. Cao X, Chen Y, Chang PR et al (2008) Green composites reinforced with hemp nanocrystals in plasticized starch. J Appl Polym Sci 109(6):3804–3810CrossRefGoogle Scholar
  19. Carbone M, Donia DM, Sabbatella G et al (2016) Silver nanoparticles in polymeric matrices for fresh food packaging. J King Saud Univ Sci 28:273–279CrossRefGoogle Scholar
  20. Cavallaro G, Lazzara G, Milioto S (2013) Sustainable nanocomposites based on halloysite nanotubes and pectin/polyethylene glycol blend. Polym Degrad Stab 98:2529–2536CrossRefGoogle Scholar
  21. Chen D, Lawton D, Thompson MR et al (2012) Biocomposites reinforced with cellulose nanocrystals derived from potato peel waste. Carbohydr Polym 90:709–716CrossRefPubMedGoogle Scholar
  22. Cheng Y, Deng S, Chen P et al (2009) Polylactic acid (PLA) synthesis and modifications: a review. Front Chem China 4(3):259–264CrossRefGoogle Scholar
  23. Cho J, Joshi MS, Sun CT (2006) Effect of inclusion size on mechanical properties of polymeric composites with micro and nano particles. Compos Sci Technol 66(13):1941–1952CrossRefGoogle Scholar
  24. Correa JP, Molina V, Sanchez M et al (2017) Improving ham shelf life with a polyhydroxybutyrate/polycaprolactone biodegradable film activated with nisin. Food Packaging Shelf Life 11:31–39CrossRefGoogle Scholar
  25. Corsello FA, Bolla PA, Anbinder PS et al (2017) Morphology and properties of neutralized chitosan-cellulose nanocrystals biocomposite films. Carbohydr Polym 156:452–459CrossRefPubMedGoogle Scholar
  26. Dash S, Swain SK (2013) Synthesis of thermal and chemical resistant oxygen barrier starch with reinforcement of nano silicon carbide. Carbohydr Polym 97:758–763CrossRefPubMedGoogle Scholar
  27. De Paula EL, Roig F, Mas A et al (2016) Effect of surface-grafted cellulose nanocrystals on the thermal and mechanical properties of PLLA based nanocomposites. Eur Polym J 84:173–187CrossRefGoogle Scholar
  28. Dominguez-Martinez B, Martínez-Flores H, Berrios J et al (2017) Physical characterization of biodegradable films based on chitosan, polyvinyl alcohol and opuntia mucilage. J Polym Environ 25(3):683–691CrossRefGoogle Scholar
  29. El Miri N, Abdelouahdi K, Barakar A et al (2015) Bio-nanocomposite films reinforced with cellulose nanocrystals: rheology of film-forming solutions, transparency, water vapor barrier and tensile properties of films. Carbohydr Polym 129:156–167CrossRefPubMedGoogle Scholar
  30. El-Hadi A (2017) Increase the elongation at break of poly (lactic acid) composites for use in food packaging films. Sci Rep 7:46767. Scholar
  31. Emadian SM, Onay TT, Demirel B (2017) Biodegradation of bioplastics in natural environments. Waste Manag 59:526–536CrossRefPubMedGoogle Scholar
  32. Fabra MJ, Talens P, Gavara R et al (2012) Barrier properties of sodium caseinate films as affected by lipid composition and moisture content. J Food Eng 109(3):372–379CrossRefGoogle Scholar
  33. Fabra MJ, López-Rubio A, Lagaron JM (2014) Biopolymers for food packaging applications. In: Aguilar de Armas MR, Román JS (eds) Smart polymers and their applications. Elsevier, Amsterdam, pp 476–509CrossRefGoogle Scholar
  34. Fabra MJ, López-Rubio A, Ambrosio-Martín J et al (2016) Improving the barrier properties of thermoplastic corn starch-based films containing bacterial cellulose nanowhiskers by means of PHA electrospun coatings of interest in food packaging. Food Hydrocoll 621:261–268CrossRefGoogle Scholar
  35. Flauzino Neto WP, Silvério HA, Dantas NO et al (2013) Extraction and characterization of cellulose nanocrystals from agro-industrial residue soy hulls. Ind Crop Prod 42:480–488CrossRefGoogle Scholar
  36. Follain NG, Belbekhouche S, Bras J et al (2013) Water transport properties of bionanocomposites reinforced by Luffa cylindrica cellulose nanocrystals. J Membr Sci 427:218–229CrossRefGoogle Scholar
  37. Fortunati E, Puglia D, Luzi F et al (2013a) Binary PVA bio-nanocomposites containing cellulose nanocrystals extracted from different natural sources: part I. Carbohydr Polym 97:825–836CrossRefPubMedGoogle Scholar
  38. Fortunati E, Pelltzer M, Armentano I et al (2013b) Combined effects of cellulose nanocrystals and silver nanoparticles on the barrier and migration properties of PLA nano-biocomposites. J Food Eng 118:117–124CrossRefGoogle Scholar
  39. Fortunati E, Luzi F, Puglia D et al (2014) Investigation of thermo-mechanical, chemical and degradative properties of PLA-limonene films reinforced with cellulose nanocrystals extracted from Phormium tenax leaves. Eur Polym J 56:77–91CrossRefGoogle Scholar
  40. Fortunati E, Luzi F, Puglia D et al (2015) Processing of PLA nanocomposites with cellulose nanocrystals extracted from Posidonia oceanica waste: innovative reuse of coastal plant. Ind Crop Prod 67:439–447CrossRefGoogle Scholar
  41. Fortunati E, Luzi F, Jiménez A et al (2016) Revalorization of sunflower stalks as novel sources of cellulose nanofibrils and nanocrystals and their effect on wheat gluten bionanocomposite properties. Carbohydr Polym 149:357–368CrossRefPubMedGoogle Scholar
  42. Fortunati E, Gigli M, Luzi F et al (2017) Processing and characterization of nanocomposite based on poly(butylene/triethylene succinate) copolymers and cellulose nanocrystals. Carbohydr Polym 165:51–60CrossRefPubMedGoogle Scholar
  43. Fukushima K, Tabuani D, Arena M et al (2013) Effect of clay type and loading on thermal, mechanical properties and biodegradation of poly(lactic acid) nanocomposites. React Funct Polym 73:540–549CrossRefGoogle Scholar
  44. Giménez B, López de Lacey A, Pérez-Santín E et al (2013) Release of active compounds from agar and agar–gelatin films with green tea extract. Food Hydrocoll 30:264–271CrossRefGoogle Scholar
  45. González K, Retegi A, González A et al (2015) Starch and cellulose nanocrystals together into thermoplastic starch bionanocomposites. Carbohydr Polym 117:83–90CrossRefPubMedGoogle Scholar
  46. Graupner N, Ziegmann G, Wilde F et al (2016) Procedural influences on compression and injection moulded cellulose fibre-reinforced polylactide (PLA) composites: influence of fibre loading, fibre length, fibre orientation and voids. Compos Part A Appl Sci Manuf 81:158–171CrossRefGoogle Scholar
  47. Gutiérrez TJ (2017) Chitosan applications for the food industry. In: Ahmed S, Ikram S (eds) Chitosan: derivatives, composites and applications. Wiley-Scrivener, Beverly, MA, pp 183–232. EE.UU. ISBN: 978-1-119-36350-7. Scholar
  48. Gutiérrez TJ (2018) Biodegradability and compostability of food nanopackaging materials. In: Cirillo G, Kozlowski MA, Spizzirri UG (eds) Composite materials for food packaging. Wiley-Scrivener, Beverly, MA, pp 263–289 EE.UU. ISBN: 978-1-119-16020-5.
  49. Gutiérrez TJ, Alvarez VA (2017) Cellulosic materials as natural fillers in starch-containing matrix-based films: a review. Polym Bull 74(6):2401–2430. Scholar
  50. Gutiérrez TJ, Alvarez VA (2018) Bionanocomposite films developed from corn starch and natural and modified nano-clays with or without added blueberry extract. Food Hydrocoll 77:407–420. Scholar
  51. Gutiérrez T, González P, Medina C et al (2017) Effect of filler properties on the antioxidant response of thermoplastic starch composites. In: Thakur V, Thakur M, Kessler M (eds) Handbook of composites from renewable materials. Wiley, New York, pp 337–369.
  52. Gutiérrez TJ, Ollier R, Alvarez VA (2018) Surface properties of thermoplastic starch materials reinforced with natural fillers. In: Thakur V, Thakur M (eds) Functional biopolymers. Springer series on polymer and composite materials. Springer, Cham, pp 131–158.
  53. Haque MM, Puglia D, Fortunati E et al (2017) Effect of reactive functionalization on properties and degradability of poly(lactic acid)/poly(vinyl acetate) nanocomposites with cellulose nanocrystals. React Funct Polym 110:1–9CrossRefGoogle Scholar
  54. He J, Chong Yap R, Wong S et al (2015) Polymer composites for intelligent food packaging. J Mol Eng Mater 3(1):1–12Google Scholar
  55. Heitmann A, Patrício P, Coura I et al (2016) Nanostructured niobium oxyhydroxide dispersed poly (3-hydroxybutyrate) (PHB) films: highly efficient photocatalysts for degradation methylene blue dye. Appl Catal B Environ 189:141–150CrossRefGoogle Scholar
  56. Herrera N, Salaberria AM, Mathe A et al (2016) Plasticized polylactic acid nanocomposite films with cellulose and chitin nanocrystals prepared using extrusion and compression molding with two cooling rates: effects on mechanical, thermal and optical properties. Compos Part A 83:89–97CrossRefGoogle Scholar
  57. Hossain ABMS, Ibrahim N, AlEissa MS (2016) Nano-cellulose derived bioplastic biomaterial data for vehicle bio-bumper from banana peel waste biomass. Data Brief 8:286–294CrossRefGoogle Scholar
  58. Hu Z, Ballinger S, Pelton R et al (2015) Surfactant-enhanced cellulose nanocrystal pickering emulsions. J Coll Interface Sci 439:139–138CrossRefGoogle Scholar
  59. Jiménez A, Fabra MJ, Talens P et al (2013) Physical properties and antioxidant capacity of starch–sodium caseinate films containing lipids. J Food Eng 116(3):695–702CrossRefGoogle Scholar
  60. Johar N, Ahmad I, Dufresne A (2012) Extraction, preparation and characterization of cellulose fibres and nanocrystals from rice husk. Ind Crop Prod 37:93–99CrossRefGoogle Scholar
  61. Jonoobi M, Oladi R, Davaoudpour Y et al (2015) Different preparation methods and properties of nanostructured cellulose from various natural resources and residues: a review. Cellulose 22:935–969CrossRefGoogle Scholar
  62. Kaboorani A, Riedl B (2015) Surface modification of cellulose nanocrystals (CNC) by a cationic surfactant. Ind Crop Prod 65:45–55CrossRefGoogle Scholar
  63. Kallel F, Bettaieb F, Khiari R et al (2016) Isolation and structural characterization of cellulose nanocrystals extracted from garlic straw. Ind Crop Prod 87:287–296CrossRefGoogle Scholar
  64. Kanmani P, Rhim JW (2014) Physicochemical properties of gelatin/silver nanoparticle antimicrobial composite films. Food Chem 148:162–169CrossRefPubMedGoogle Scholar
  65. Le Corre D, Angellier-Coussy H (2014) Preparation and application of starch nanoparticles for nanocomposites: a review. React Funct Polym 85:97–120CrossRefGoogle Scholar
  66. Leceta I, Guerrero P, de la Caba K (2013) Functional properties of chitosan-based films. Carbohydr Polym 93(1):339–346CrossRefPubMedGoogle Scholar
  67. Lizundia E, Fortunati E, Dominici F et al (2016) PLLA-grafted cellulose nanocrystals: role of the CNC content and grafting on the PLA bionanocomposite film properties. Carbohydr Polym 142:105–113CrossRefPubMedGoogle Scholar
  68. López OV, Ninago MD, Soledad Lencina MM et al (2015) Thermoplastic starch plasticized with alginate–glycerol mixtures: melt-processing evaluation and film properties. Carbohydr Polym 126:83–90CrossRefPubMedGoogle Scholar
  69. Ludueña L, Vázquez A, Alvarez V (2012) Effect of lignocellulosic filler type and content on the behavior of polycaprolactone based eco-composites for packaging applications. Carbohydr Polym 87:411–421CrossRefGoogle Scholar
  70. Luzi F, Fortunati E, Jiménez A (2016) Production and characterization of PLA PBS biodegradable blends reinforced with cellulose nanocrystals extracted from hemp fibres. Ind Crop Prod 93:276–289CrossRefGoogle Scholar
  71. Majeed K, Jawaid M, Hassan A et al (2013) Potential materials for food packaging from nanoclay/natural fibres filled hybrid composites. Mater Des 46:391–410CrossRefGoogle Scholar
  72. Maqsood HS, Baheti V, Wiener J et al (2016) Reinforcement of enzyme hydrolyzed longer jute micro crystals in polylactic acid. Polym Compos 39:1089–1097. Scholar
  73. Martino L, Berthet MA, Angellier-Coussy H et al (2015) Understanding external plasticization of melt extruded PHBV–wheat straw fibers biodegradable composites for food packaging. J Appl Polym Sci 41611:2–11Google Scholar
  74. Miranda CS, Ferreira MS, Magalhães MT, Santos WJ et al (2015) Mechanical, thermal and barrier properties of starch-based films plasticized with glycerol and lignin and reinforced with cellulose nanocrystals. Mater Today Proc 2:63–69CrossRefGoogle Scholar
  75. Mizuno S, Maeda T, Kanemura C et al (2015) Biodegradability, reprocessability, and mechanical properties of polybutylene succinate (PBS) photografted by hydrophilic or hydrophobic membranes. Polym Degrad Stab 117:58–65CrossRefGoogle Scholar
  76. Moreno O, Gil A, Atarés L et al (2017) Active starch-gelatin films for shelf-life extension of marinated salmon. LWT Food Sci Technol 84:189–195CrossRefGoogle Scholar
  77. Moriana R, Vilaplana F, Karlsson S et al (2011) Improved thermo-mechanical properties by the addition of natural fibres in starch-based sustainable biocomposites. Compos Part A 42:30–40CrossRefGoogle Scholar
  78. Moustafa H, Guizani C, Dupont C et al (2016) Utilization of Torrefied coffee grounds as reinforcing agent to produce high-quality biodegradable PBAT composites for food packaging applications. ACS Sustain Chem Eng 5(2):1906–1916CrossRefGoogle Scholar
  79. Mukurubira AR, Mellem JM, Amonsou EO (2017) Effects of amadumbe starch nanocrystals on the physicochemical properties of starch biocomposite films. Carbohydr Polym 165:142–148CrossRefGoogle Scholar
  80. Muller J, González-Martínez C, Chiralt A (2017a) Combination of poly(lactic) acid and starch for biodegradable food packaging. Materials 10.
  81. Muller J, González-Martínez C, Chiralt A (2017b) Poly(lactic) acid (PLA) and starch bilayer films, containing cinnamaldehyde, obtained by compression moulding. Eur Polym J 95:56–70CrossRefGoogle Scholar
  82. Nair NR, Sekhar VC, Nampoothir KM et al (2017) Biodegradation of biopolymers. In: Pandey A, Negi S, Soccol CR (eds) Current developments in biotechnology and bioengineering. Elsevier, Amsterdam, pp 739–755CrossRefGoogle Scholar
  83. Ng HM, Sin LT, Tee TT et al (2015) Extraction of cellulose nanocrystals from plant sources for application as reinforcing agent in polymers. Compos Part B 75:176–200CrossRefGoogle Scholar
  84. Ortega-Toro R, Bonilla J, Talens P et al (2017) Future of starch-based materials in food packaging. In: Vilar M (ed) Starch-based materials in food packaging: processing, characterization and application. Academic Press, London, pp 257–312CrossRefGoogle Scholar
  85. Pardo-Ibáñez P, López-Rubio A, Martínez-Sanz M et al (2014) Keratin–polyhydroxyalkanoate melt-compounded composites with improved barrier properties of interest in food packaging applications. J Appl Polym Sci 39947:1–10Google Scholar
  86. Peelman N, Ragaert P, Meulenaer B et al (2013) Application of bioplastics for food packaging. Trends Food Sci Technol 32(2):128–141CrossRefGoogle Scholar
  87. Ramos M, Fortunati E, Peltzer M et al (2014) Influence of thymol and silver nanoparticles on the degradation of poly(lactic acid) based nanocomposites: thermal and morphological properties. Polym Degrad Stab 108:158–165CrossRefGoogle Scholar
  88. Requena R, Vargas M, Chiralt A (2017) Release kinetics of carvacrol and eugenol from poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV) films for food packaging applications. Eur Polym J 92:185–193CrossRefGoogle Scholar
  89. Rhim JW, Wang LF, Lee Y et al (2014) Preparation and characterization of bio-nanocomposite films of agar and silver nanoparticles: laser ablation method. Carbohydr Polym 103:456–465CrossRefPubMedGoogle Scholar
  90. Rimdusit S, Jingjid S, Damrongsakkul S et al (2008) Biodegradability and property characterizations of methyl cellulose: effect of nanocompositing and chemical crosslinking. Carbohydr Polym 72:444–455CrossRefGoogle Scholar
  91. Rivero CP, Hu Y, Kwan TH et al (2017) Bioplastics from solid waste. In: Wong JWC, Tyagi RD, Pandey AR (eds) Current developments in biotechnology and bioengineering. Elsevier, Amsterdam, pp 1–26Google Scholar
  92. Rocca-Smith J, Marcuzzo E, Karbowiak T et al (2016) Effect of lipid incorporation on functional properties of wheat gluten based edible films. J Cereal Sci 69:275–282CrossRefGoogle Scholar
  93. Rombouts I, Lagrain B, Delcour J et al (2013) Crosslinks in wheat gluten films with hexagonal close-packed protein structures. Ind Crop Prod 51:229–235CrossRefGoogle Scholar
  94. Rosa MF, Medeiros ES, Malmonge JA et al (2010) Cellulose nanowhiskers from coconut husk fibers: effect of preparation conditions on their thermal and morphological behavior. Carbohydr Polym 81:83–92CrossRefGoogle Scholar
  95. Santos RPO, Rodrigues BVM, Ramires EC et al (2015) Bio-based materials from the electrospinning of lignocellulosic sisal fibers and recycled PET. Ind Crop Prod 72:69–76CrossRefGoogle Scholar
  96. Sanuja S, Agalya A, Umapathy MJ (2014) Studies on magnesium oxide reinforced chitosan bionanocomposite incorporated with clove oil for active food packaging application. Int J Polym Mater Polym Biomater 63:733–740CrossRefGoogle Scholar
  97. Shankar S, Rhim JW (2016) Preparation of nanocellulose from micro-crystalline cellulose: the effect on the performance and properties of agar-based composite films. Carbohydr Polym 135:18–26CrossRefPubMedGoogle Scholar
  98. Shih YF, Chang WC, Liu WC et al (2014) Pineapple leaf/recycled disposable chopstick hybrid fiber-reinforced biodegradable composites. J Taiwan Inst Chem Eng 45(4):2039–2046CrossRefGoogle Scholar
  99. Slavutsky AM, Bertuzzi MA (2014) Water barrier properties of starch films reinforced with cellulose nanocrystals obtained from sugarcane bagasse. Carbohydr Polym 110:53–61CrossRefPubMedGoogle Scholar
  100. Sung SH, Chang Y, Han J (2017) Development of polylactic acid nanocomposite films reinforced with cellulose nanocrystals derived from coffee silverskin. Carbohydr Polym 169:495–503CrossRefPubMedGoogle Scholar
  101. Van den Broek L, Knoop R, Kappen F et al (2015) Chitosan films and blends for packaging material. Carbohydr Polym 116:237–242CrossRefPubMedGoogle Scholar
  102. Watthanaphanit A, Supaphol P, Tamura H et al (2008) Fabrication, structure, and properties of chitin whisker-reinforced alginate nanocomposite fibers. J Appl Polym Sci 110:890–899CrossRefGoogle Scholar
  103. Xiao S, Liu B, Wang Y et al (2014) Efficient conversion of cellulose into biofuel precursor 5-hydroxymethylfurfural in dimethyl sulfoxide–ionic liquid mixtures. Bioresour Technol 151:361–366CrossRefPubMedGoogle Scholar
  104. Zhou Y, Fan M, Chen L (2016) Interface and bonding mechanisms of plant fibre composites: an overview. Compos Part B 101:41–45CrossRefGoogle Scholar
  105. Zubeldía F, Ansorena M, Marcovich N (2015) Wheat gluten films obtained by compression molding. Polym Test 43:68–77CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Sofía Collazo-Bigliardi
    • 1
  • Rodrigo Ortega-Toro
    • 2
  • Amparo Chiralt
    • 1
  1. 1.Instituto de Ingeniería de Alimentos para el DesarrolloUniversitat Politècnica de ValènciaValenciaSpain
  2. 2.Programa de Ingeniería de Alimentos, Facultad de IngenieríaUniversidad de CartagenaCartagena de Indias D.T y CColombia

Personalised recommendations