Advertisement

Functional Carbohydrate Polymers: Prebiotics

  • Jun Yang
  • Yixiang Xu
Chapter

Abstract

Increasing scientific evidence has identified the correlation among dietary intake, the gut microbiome, and human health. Controlling the microbiome within the human gut through dietary modifications sheds light on novel nutritional strategies and clinical practices in reducing some chronic diseases. The emerging field of prebiotics, probiotics, and synbiotics is associated with the development of nutritional interventions, gut microbiome with positively impact health outcomes. Although there is strong evidence to demonstrate the complex link between gut microbiota and human health, substantial challenges still remain in delivering effective, stable and cost efficient foods with positive health outcomes, building personalized diets based on the gut microbiome profile, and standardizing clinical practices and establishing regulation. Dietary intervention, as a strong applicator, on microbiota and consequently on physiology and immune system, could play significant role in reducing the risk and progression of some chronic diseases including cancer and obesity. In this chapter, the authors focus on prebiotics as functional carbohydrate polymers, including traditional ones of human milk oligosaccharides (HMOS), fructooligosaccharides (FOS), and galactooligosaccharides (GOS), as well as potential ones of pectin oligosaccharides (POS), xylooligosaccharides (XOS), arabinoxylan oligosaccharides (AXOS), and glucomannan oligosaccharides (GMOS). To better understand the complex interplay of diet, nutrition and the microbiome in food development, as well as the effects of diet on the diversity of human microbiome, the contents of source, chemical structure, processing, physiological functionalities for each prebiotic will be covered.

Keywords

Functionality Health Plant polysaccharides Production Structure Traditional and emerging prebiotics 

Abbreviations

AX

Arabinoxylan

AXOS

Arabinoxylan oligosaccharides

DF

Dietary fiber

DP

Degree of polymerization

FOS

Fructooligosaccharides

GI tract

Gastrointestinal tract

GMOS

Glucomannan oligosaccharides

GOS

Galactooligosaccharides

HMOS

Human milk oligosaccharides

MW

Molecular weight

OS

Oligosaccharides

PI

Prebiotic index

POS

Pectin oligosaccharides

PS

Polysaccharides

SCFAs

Short-chain fatty acids

XOS

Xylooligosaccharides

References

  1. Aachary AA, Prapulla SG (2011) Xylooligosaccharides (XOS) as an emerging prebiotic: microbial synthesis, utilization, structural characterization, bioactive properties, and applications. Compr Rev Food Sci Food Saf 10:2–16CrossRefGoogle Scholar
  2. Akter MN, Sutriana A, Talpur AD, Hashim R (2016) Dietary supplementation with mannan oligosaccharide influences growth, digestive enzymes, gut morphology, and microbiota in juvenile striped catfish, Pangasianodon hypophthalmus. Aquac Int 24:127–144CrossRefGoogle Scholar
  3. Albrecht S, van Muiswinkel GC, Xu J, Schols HA, Voragen AG, Gruppen H (2011) Enzymatic production and characterization of konjac glu-comannan oligosaccharides. J Agric Food Chem 59:12658–12666PubMedCrossRefGoogle Scholar
  4. Al-Ghazzewi FH, Khanna S, Tester RF, Piggott J (2007) The potential use of hydrolysed konjac glucomannan as a prebiotic. J Sci Food Agric 87:1758–1766CrossRefGoogle Scholar
  5. Alonso-Sande M, Teijeiro-Osorio D, Remuñán-López C, Alonso MJ (2009) Glucomannan, a promising polysaccharide for biopharmaceutical purposes. Eur J Pharm Biopharm 72:453–462PubMedCrossRefGoogle Scholar
  6. Al-Sheraji SH, Ismail A, Manap MY, Mustafa S, Yusof RM, Hassan FA (2013) Prebiotics as functional foods: a review. J Funct Foods 5:1542–1553CrossRefGoogle Scholar
  7. Anderson JW, Baird P, Davis RH, Ferreri S, Knudtson M, Koraym A et al (2009) Health benefits of dietary fiber. Nutr Rev 67:188–205PubMedCrossRefGoogle Scholar
  8. Andersson R, Åman P (2008) Cereal arabinoxylan: Occurence, structure and properties. In: McCleary BV, Prosky L (eds) Advanced dietary fiber technology. Blackwell Science, pp 301–314Google Scholar
  9. Andrewartha K, Phillips DR, Stone BA (1979) Solution properties of wheat-flour arabinoxylans and enzymically modified arabinoxylans. Carbohydr Res 77:191–204CrossRefGoogle Scholar
  10. Angus F, Smart S, Shortt C (2005) Prebiotic ingredients with emphasis on galacto-oligosaccharides and fructooligosaccharides. In: Tamine A (ed) Probiotic dairy products. Blackwell Publishing, Oxford, pp 120–137Google Scholar
  11. Arthee R, Vijila K (2014) Study on fructosyltransferase enzyme from Aspergillus sp. in fructooligosaccharides production. Res J Recent Sci 3:147–153Google Scholar
  12. Asakuma S, Hatakeyama E, Urashima T, Yoshida E, Katayama T, Yamamoto K, Kumagai H et al (2011) Physiology of consumption of human milk oligosaccharides by infant gut-associated bifidobacteria. J Biol Chem 286:34583–34592PubMedPubMedCentralCrossRefGoogle Scholar
  13. Association of Official Analytical Chemists (AOAC) (2005) Determination of trans-galactooligosaccharides (TGOS) in selected food products. Method 2001.02. In: Latimer GW, Horwitz W (eds) Official methods of analysis of AOAC International, 18th edn. AOAC International, Gaithersburg, MDGoogle Scholar
  14. Austin S, Bénet T, Michaud J, Cuany D, Rohfritsch P (2014) Determination of β-galactooligosaccharides by liquid chromatography. Int J Anal Chem 2014:768406.  https://doi.org/10.1155/2014/768406CrossRefPubMedPubMedCentralGoogle Scholar
  15. Bagherian H, Ashtiani FZ, Fouladitajar A, Mohtashamy M (2011) Comparisons between conventional, microwave- and ultrasound-assistedmethods for extraction of pectin from grapefruit. Chem Eng Process Process Intensif 50:1237–1243CrossRefGoogle Scholar
  16. Barile D, Tao N, Lebrilla CN, Coisson JD, Arlorio M, Germana JB (2009) Permeate from cheese whey ultrafiltration is a source of milk oligosaccharides. Int Dairy J 19:524–530PubMedPubMedCentralCrossRefGoogle Scholar
  17. Bataillon M, Mathaly P, Nunes Cardinali AP, Duchiron F (1998) Extraction and Purification of arabinoxylans from destarched wheat bran in a pilot scale. Ind Crop Prod 8:37–43CrossRefGoogle Scholar
  18. Belorkar SA, Gupta AK (2016) Oligosaccharides: a boon from nature’s desk. AMB Express 6:82PubMedPubMedCentralCrossRefGoogle Scholar
  19. Benamrouche S, Cronier D, Debeire P, Chabbert B (2002) A chemical and histological study on the effect of (1,4)-beta-endo-xylanase treatment on wheat bran. J Cereal Sci 36:253–260CrossRefGoogle Scholar
  20. Bergmans MEF, Beldman G, Gruppen H, Voragen AGJ (1996) Optimisation of the selective extraction of (glucurono) arabinoxylans from wheat bran: use of barium and calcium hydroxide solution at elevated temperatures. J Cereal Sci 23:235–245CrossRefGoogle Scholar
  21. Bode L (2009) Human milk oligosaccharides: prebiotics and beyond. Nutr Rev 67:S183–S191PubMedCrossRefGoogle Scholar
  22. Bode L (2012) Human milk oligosaccharides: every baby needs a sugar mama. Glycobiology 22:1147–1162PubMedPubMedCentralCrossRefGoogle Scholar
  23. Bode L (2015) The functional biology of human milk oligosaccharides. Early Hum Dev 91:619–622PubMedCrossRefGoogle Scholar
  24. Bornet F (2001) Fructo-oligosaccharides and other fructans: chemistry, structure and nutritional effects. In: McCleary BV, Prosky L (eds) Advanced dietary fiber technology. Blackwell Science, pp 480–493Google Scholar
  25. Borromei C, Careri M, Cavazza A, Corradini C, Elviri L, Mangia A, Merusi C (2009) Evaluation of fructooligosaccharides and inulins as potentially health benefiting food ingredients by HPAEC-PED and MALDI-TOF MS. Int J Anal Chem 2009:530639.  https://doi.org/10.1155/2009/530639CrossRefPubMedPubMedCentralGoogle Scholar
  26. Broekaert WF, Courtin CM, Verbeke K, Van de Wiele T, Verstraete W, Delcour JA (2011) Prebiotic and other health-related effects of cereal-derived arabinoxylans, arabinoxylan-oligosaccharides, and xylooligosaccharides. Crit Rev Food Sci Nutr 51:178–194PubMedCrossRefGoogle Scholar
  27. Caffall KH, Mohnen D (2009) The structure, function, and biosynthesis ofplant cell wall pectic polysaccharides. Carbohydr Res 344:1879–1900PubMedCrossRefGoogle Scholar
  28. Charbonneau MR, O’Donnell D, Blanton LV, Totten SM, Davis JC, Barratt MJ et al (2016) Sialylated milk oligosaccharides promote microbiota-dependent growth in models of infant undernutrition. Cell 164:859–871PubMedPubMedCentralCrossRefGoogle Scholar
  29. Chen J, Liang RH, Liu W, Li T, Liu CM, Wu SS et al (2013) Pectic-oligosaccharides prepared by dynamic high-pressure microfluidization and their in vitro fermentation properties. Carbohydr Polym 91:175–182PubMedCrossRefGoogle Scholar
  30. Chonan O, Matsumoto K, Watanuki M (1995) Effect of galactooligosaccharides on calcium absorption and preventing bone loss in ovariectomized rats. Biosci Biotech Biochem 59:236–239CrossRefGoogle Scholar
  31. Christiaens S, Uwibambe D, Uyttebroek M, Droogenbroeck BV, Loey AMV, Hendrickx ME (2015) Pectin characterisation in vegetable waste streams: a starting point for waste valorisation in the food industry. LWT Food Scie Technol 61:275–282CrossRefGoogle Scholar
  32. Chuankhayan P, Hsleh CY, Huang YC, Hsleh YY, Guan HH, Hsleh YC, Tlen YC et al (2010) Crystal structures of Aspergillus japonicus fructosyltransferase complex with donor/acceptor substrates reveal complete subsites in the active site for catalysis. J Biol Chem 285:23251–23264PubMedPubMedCentralCrossRefGoogle Scholar
  33. Cinquin C, Le Blay G, Fliss I, Lacroix C (2004) Immobilization of infant fecal microbiota and utilization in an in vitro colonic fermentation model. Microb Ecol 48:128–138PubMedCrossRefGoogle Scholar
  34. Claesson MJ, Jeffery IB, Conde S, Power SE, O’Connor EM, Cusack S et al (2012) Gut microbiota composition correlates with diet and health in the elderly. Nature 488:178–184PubMedCrossRefGoogle Scholar
  35. Cloetens L, De Preter V, Swennen K, Brockaert WF, Courtin CM, Delcour JA et al (2008) Dose-response effect of arabinoxylooligosaccharides on gastrointestinal motility and on colonic bacterial metabolism in healthy volunteers. J Am Coll Nutr 27:512–518PubMedCrossRefGoogle Scholar
  36. Coda R, Kärki I, Nordlund E, Heiniö R-L, Poutanen K, Katina K (2014) Influence of particle size on bioprocess induced changes on technological functionality of wheat bran. Food Microbiol 37:69–77PubMedCrossRefGoogle Scholar
  37. Concha J, Zúñiga ME (2012) Enzymatic depolymerization of sugar beet pulp: production and characterization of pectin and pectic-oligosaccharides as apotential source for functional carbohydrates. Chem Eng J 192:29–36CrossRefGoogle Scholar
  38. Concha J, Weinstein C, Zúñiga ME (2013) Production of pectic extracts from sugar beet pulp with antiproliferative activity on a breast cancer cell line. Front Chem Sci Eng 7:482–489CrossRefGoogle Scholar
  39. Connolly ML, Lovegrove JA, Tuohy KM (2010) Konjac glucomannan hydrolysate beneficially modulates bacterial composition and activity within the faecal microbiota. J Funct Foods 2:219–224CrossRefGoogle Scholar
  40. Coppa GV, Zampini L, Galeazzi T, Facinelli B, Ferrante L, Capretti R, Orazio G (2006) Human milk oligosaccharides inhibit the adhesion to Caco-2 cells of diarrheal pathogens: Escherichia coli, Vibrio cholerae, and Salmonella fyris. Pediatr Res 59:377–382PubMedCrossRefGoogle Scholar
  41. Correia MAS, Mazumder K, Bras JLA, Firbank SJ, Zhu YP, Lewis RJ et al (2011) Structure and function of an arabinoxylan-specific xylanase. J Biol Chem 286:22510–22520PubMedPubMedCentralCrossRefGoogle Scholar
  42. Corzo N, Alonso JL, Azpiroz F, Calvo MA, Cirici M, Leis R et al (2015) Prebióticos: concepto, propiedades y efectos beneficiosos. Nutr Hosp 31:99–118PubMedGoogle Scholar
  43. Corzo-Martínez M, Luscher A, de las Rivas B, Muñoz R, Moreno FJ (2015) Valorization of cheese and tofu whey through enzymatic synthesis of lactosucrose. PLoS One 10:e0139035PubMedPubMedCentralCrossRefGoogle Scholar
  44. Corzo-Martínez M, García-Campos G, Montilla A, Moreno FJ (2016) Tofu whey permeate is an efficient source to enzymatically produce prebiotic fructooligosaccharides and novel fructosylated a-galactosides. J Agric Food Chem 64:4346–4352PubMedCrossRefGoogle Scholar
  45. Costa GT, Guimaraes SB, de Carvalho Sampaio HA (2012) Fructo-oligosaccharide effects on blood glucose. An overview. Acta Cir Bras 27:279–282PubMedCrossRefGoogle Scholar
  46. Costa GT, Abreu GC, Guimarães AB, Vasconcelos PR, Guimarães SB (2015) Fructo-oligosaccharide effects on serum cholesterol levels. An overview. Acta Cir Bras 30:366–370PubMedCrossRefGoogle Scholar
  47. Courtin CM, Delcour JA (2002) Arabinoxylans and endoxylanases in wheat flour bread-making. J Cereal Sci 35:225–243CrossRefGoogle Scholar
  48. Courtin CM, Broekaert WF, Swennen K, Lescroart O, Onagbesan O, Buyse J et al (2008) Dietary inclusion of wheat bran arabinoxylooligosaccharides induces beneficial nutritional effects in chickens. Cereal Chem 85:607–613CrossRefGoogle Scholar
  49. Courtin CM, Swennen K, Verjans P, Delcour JA (2009) Heat and pH stability of prebiotic arabinoxylooligosaccharides, xylooligosaccharides and fructooligosaccharides. Food Chem 112:831–837CrossRefGoogle Scholar
  50. Cronin BE, Allsopp PJ, Slevin MM, Magee PJ, Livingstone MB, Strain JJ et al (2016) Effects of supplementation with a calcium-rich marine-derived multi-mineral supplement and short-chain fructo-oligosaccharides on serum lipids in postmenopausal women. Br J Nutr 115:658–665PubMedCrossRefGoogle Scholar
  51. Damen B, Verspreet J, Pollet A, Broekaert WF, Delcour JA, Courtin CM (2011) Prebiotic effects and intestinal fermentation of cereal arabinoxylans and arabinoxylan oligosaccharides in rats depend strongly on their structural properties and joint presence. Mol Nutr Food Res 55:1862–1874PubMedCrossRefGoogle Scholar
  52. Damen B, Pollet A, Dornez E, Broekaert AF, Van Haesendonck I et al (2012) Xylanase-mediated in situ production of arabinoxylan oligosaccharides with prebiotic potential in whole meal breads and breads enriched with arabinoxylan rich materials. Food Chem 131:111–118CrossRefGoogle Scholar
  53. David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE et al (2014) Diet rapidly and reproducibly alters the human gut microbiome. Nature 505:559–563PubMedCrossRefGoogle Scholar
  54. Davis LM, Martinez I, Walter J, Hutkins R (2010) A dose dependent impact of prebiotic galactooligosaccharides on the intestinal microbiota of healthy adults. Int J Food Microbiol 144:285–292PubMedCrossRefGoogle Scholar
  55. de Vries JA, Voragen AGJ, Rombouts FM, Pilnik W (1983) Distribution of methoxyl groups in apple pectic substances. Carbohydr Polym 3:245–258CrossRefGoogle Scholar
  56. Dehghan P, Gargari BP, Asgharijafarabadi M (2013) Effects of high performance inulin supplementation on glycemic status and lipid profile in women with type 2 diabetes: a randomized, placebo-controlled clinical trial. Health Promot Perspect 3:55–63PubMedPubMedCentralGoogle Scholar
  57. Dervilly-Pinel G, Rimsten L, Saulnier L, Andersson R, Aman P (2001) Water extractable arabinoxylan from pearled flours of wheat, barley, rye and triticale. Evidence for the presence of ferulic acid dimers and their involvement in gel formation. J Cereal Sci 34:207–214CrossRefGoogle Scholar
  58. Desai MS, Seekatz AM, Koropatkin NM, Kamada N, Hickey CA, Wolter M et al (2016) A dietary fiber-deprived gut microbiota degrades the colonic mucus barrier and enhances pathogen susceptibility. Cell 167:1339–1353PubMedPubMedCentralCrossRefGoogle Scholar
  59. Díez-Municio M, DeLasRivas B, Jimeno ML, Munoz R, Moreno F, Herrero M (2013) Enzymatic synthesis and characterization of fructooligosaccharides and novel maltosylfructosides by inulosucrase from Lactobacillus gasseri DSM20604. Appl Environ Microbiol 79:4129–4140PubMedPubMedCentralCrossRefGoogle Scholar
  60. Dominguez AL, Rodrigues LR, Lima NM, Teixeira JA (2014) An overview of the recent developments on fructooligosaccharide production and application. Food Bioprocess Technol 7:324–337CrossRefGoogle Scholar
  61. Doner, L. W., Sweeney, G. A., & Hicks, K. B. (2000). Isolation of hemicellulose from corn fiber, U.S. patent 6,147,206Google Scholar
  62. Doner LW, Johnston DB, Singh V (2001) Analysis and properties of arabinoxylans from discrete corn wet-milling fiber fractions. J Agric Food Chem 49:1266–1269PubMedCrossRefGoogle Scholar
  63. Dongowski G, Lorenz A, Anger H (2000) Degradation of pectins with different degrees of esterification by Bacteroides thetaiotaomicron isolated from human gut flora. Appl Environ Microbiol 66:1321–1327PubMedPubMedCentralCrossRefGoogle Scholar
  64. Ducatelle R, Eeckhaut V, Haesebrouck F, Van Immerseel F (2015) A review on prebiotics and probiotics for the control of dysbiosis: present status and future perspectives. Animal 9:43–48PubMedCrossRefGoogle Scholar
  65. Elamir AA, Tester RF, Al-Ghazzewi FH, Kaal HY, Ghalbon AA, Elmegrahai NA (2008) Effects of konjac glucomannan hydrolysates on the gut microflora of mice. Nutr Food Sci 38:422–429CrossRefGoogle Scholar
  66. Espinosa RM, Tamez M, Prieto P (2007) Efforts to emulate human milk oligosaccharides. Br J Nutr 98:S74–S79PubMedGoogle Scholar
  67. Falck P, Linares-Pastén JA, Karlsson EN, Adlercreutz P (2018) Arabinoxylanase from glycoside hydrolase family 5 is a selective enzyme for production of specific arabinoxylooligosaccharides. Food Chem 242:579–584PubMedCrossRefGoogle Scholar
  68. Fissore EN, Rojas AM, Gerschenson LN (2012) Rheological performance ofpectin-enriched products isolated from red beet (Beta vulgaris L: var. conditiva) through alkaline and enzymatic treatments. Food Hydrocoll 26:249–260CrossRefGoogle Scholar
  69. Flores-Maltos DA, Mussatto SI, Contreras-Esquivel JC, Rodríguez-Herrera R, Teixeira JA, Aguilar CN (2016) Biotechnological production and application of fructooligosaccharides. Crit Rev Biotechnol 36:259–267PubMedCrossRefGoogle Scholar
  70. Fontana JD, Grzybowski A, Tiboni M, Passos M (2011) Fructo-oligosaccharide production from inulin through partial citric or phosphoric acid hydrolyses. J Med Food 14:1425–1430PubMedCrossRefGoogle Scholar
  71. Galeotti F, Coppa GV, Zampini L, Maccari F, Galeazzi T, Padella L et al (2014) Capillary electrophoresis separation of human milk neutral and acidic oligosaccharides derivatized with 2-aminoacridone. Electrophoresis 35:811–818PubMedCrossRefGoogle Scholar
  72. Ganan M, Collins M, Rastall R, Hotchkiss AT, Chau HK, Carrascosa AV et al (2010) Inhibition by pectic oligosaccharides of the invasion of undifferentiated and differentiated CaCo-2 cells by Campylobacter jejuni. Int J Food Microbiol 137:181–185PubMedCrossRefGoogle Scholar
  73. Garcia AL, Otto B, Reich S-C, Weickert MO, Steiniger J, Machowetz A et al (2007) Arabinoxylan consumption decreases postprandial serum glucose, serum insulin and plasma total ghrelin response in subjects with impaired glucose tolerance. Eur J Clin Nutr 61:334–341PubMedCrossRefGoogle Scholar
  74. García-Cayuela T, Díez-Municio M, Herrero M, Martínez-Cuesta MC, Peláez C, Requena T, Moreno FJ (2014) Selective fermentation of potential prebiotic lactose-derived oligosaccharides by probiotic bacteria. Int Dairy J 38:11–15CrossRefGoogle Scholar
  75. Garrido D, Ruiz-Moyano S, Lemay DG, Sela DA, German JB, Mills DA (2015) Comparative transcriptomics reveals key differences in the response to milk oligosaccharides of infant gut-associated bifidobacteria. Sci Rep 5:13517.  https://doi.org/10.1038/srep13517CrossRefPubMedPubMedCentralGoogle Scholar
  76. Gelroth J, Ranhotra GS (2001) Food uses of fiber. In: Cho SS, Dreher ML (eds) Handbook of dietary fiber. Marcel Dekker, New York, pp 435–451Google Scholar
  77. Geraylou Z, Souffreau C, Rurangwa E, Maes GE, Spanier KI et al (2013) Prebiotic effects of arabinoxylan oligosaccharides on juvenile Siberian sturgeon (Acipenser baerii) with emphasis on the modulation of the gut microbiota using 454 pyrosequencing. FEMS Microbiol Ecol 86:357–371PubMedCrossRefGoogle Scholar
  78. Gibson R, Roberfroid MR (1995) Dietary modulation of the human colonic microbiota introducing the concept of prebiotics. J Nutr 125:1401–1412PubMedGoogle Scholar
  79. Gill RK, Dudeja PK (2011) A novel facet to consider for the effects of butyrate on its target cells. Focus on “The short-chain fatty acid butyrate is a substrate of breast cancer resistance protein”. Am J Physiol Cell Physiol 301(5):C977–C979PubMedPubMedCentralCrossRefGoogle Scholar
  80. Goehring KC, Kennedy AD, Prieto PA, Buck RH (2014) Direct evidence for the presence of human milk oligosaccharides in the circulation of breastfed infants. PLoS One 9:e101692.  https://doi.org/10.1371/journal.pone.0101692CrossRefPubMedPubMedCentralGoogle Scholar
  81. Gomez GD, Balcazar JL (2008) A review on the interactions between gut microbiota and innate immunity of fish. FEMS Immunol Med Microbiol 52:145–154PubMedCrossRefGoogle Scholar
  82. Gómez B, Gullon B, Yáñez R, Parajo JC, Alonso JL (2013) Pectic oligosaccharides from lemon peel wastes: production, purification, and chemical characterization. J Agric Food Chem 61:10043–10053PubMedCrossRefGoogle Scholar
  83. Gómez B, Gullon B, Yanez R, Schols H, Alonso JL (2016) Prebiotic potential of pectins and pectic oligosaccharides derived from lemon peel wastes and sugar beet pulp: a comparative evaluation. J Funct Foods 20:108–121CrossRefGoogle Scholar
  84. González-Centeno MR, Knoerzer K, Sabarez H, Simal S, Rosselló C, Femenia A (2014) Effect of acoustic frequency and power density on the aqueous ultrasonic-assisted extraction of grape pomace (Vitis vinifera L.)—a response surface approach. Ultrason Sonochem 21:2176–2184PubMedCrossRefGoogle Scholar
  85. Gosling A, Stevens GW, Barber AR, Kentish SE, Gras SL (2010) Recent advances refining galactooligosaccharide production from lactose. Food Chem 121:307–318CrossRefGoogle Scholar
  86. Grand View Research (GVR) (2016a) Fructooligosaccharides (FOS) market analysis by source (inulin, sucrose) by application (food & beverages, infant formula, dietary supplements, animal Feed, pharmaceuticals) and segment forecasts to 2024. https://www.grandviewresearch.com/industry-analysis/fructooligosaccharides-market/toc. Accessed 1 Dec 2017
  87. Grand View Research (GVR) (2016b) Galacto-oligosaccharide (GOS) market trend analysis by application (food & beverage, dietary supplements), by region (North America, Europe, Asia Pacific, Latin America, Middle East & Africa), by country, and segment forecasts, 2014–2025. https://www.grandviewresearch.com/industry-analysis/galacto-oligosaccharides-gos-market. Accessed 1 Dec 2017
  88. Grootaert C, Delcour JA, Courtin CM, Broekaert WF, Verstraete W, Van de Wiele T (2007) Microbial metabolism and prebiotic potency of arabinoxylan oligosaccharides in the human intestine. Trends Food Sci Technol 18:64–71CrossRefGoogle Scholar
  89. Grootaert C, Van den Abbeele P, Marzorati M, Broekaert WF, Courtin CM, Delcour JA et al (2009) Comparison of prebiotic effects of arabinoxylan oligosaccharides and inulin in a simulator of the human intestinal microbial ecosystem. FEMS Microbiol Ecol 69:231–242PubMedCrossRefGoogle Scholar
  90. Guerreiro I, Oliva-Teles A, Enes P (2015) Improved glucose and lipid metabolism in European sea bass (Dicentrarchus labrax) fed short-chain fructooligosaccharides and xylooligosaccharides. Aquaculture 441:57–63CrossRefGoogle Scholar
  91. Guevara-Arauza JC, de Jesús Ornelas Paz J, Pimentel-González DJ, Rosales Mendoza S, Soria Guerra RE, Paz Maldonado LMT (2012) Prebiotic effect of mucilage and pectic derived oligosaccharides from nopal (Opuntia ficus-indica). Food Sci Biotechnol 21:997–1003CrossRefGoogle Scholar
  92. Gullón B, Gullón P, Sanz Y, Alonso JL, Parajó J (2011) Prebiotic potential of a refined product containing pectic oligosaccharides. LWT Food Sci Technol 44:1687–1696CrossRefGoogle Scholar
  93. Gullón B, Gómez B, Martínez-Sabajanes M, Yáñez R, Parajó J, Alonso J (2013) Pectic oligosaccharides: manufacture and functional properties. Trends Food Sci Technol 30:153–161CrossRefGoogle Scholar
  94. Guo Q, Goff HD, Cui SW (2017) Structural characterization of galacto-oligosaccharides (VITAGOS™) synthesized by transgalactosylation of lactose. Bioactive Carbohydrate. Dietary Fibre Available online July 21, 2017Google Scholar
  95. Hang H, Miao M, Li Y, Jiang B, Mu W, Zhang T (2013) Difructosan anhydrides III preparation from sucrose by coupled enzyme reaction. Carbohydr Polym 92:1608–1611PubMedCrossRefGoogle Scholar
  96. Harmayani E, Aprilia V, Marsono Y (2014) Characterization of glucomannan from Amorphophallus oncophyllus and its prebiotic activity in vivo. Carbohydr Polym 112:475–479PubMedCrossRefGoogle Scholar
  97. Havenaar R (2011) Intestinal health functions of colonic microbial metabolites: a review. Benefic Microbes 2:103–114CrossRefGoogle Scholar
  98. Ho Y-Y, Lin C-M, Wu M-C (2017) Evaluation of the prebiotic effects of citrus pectin Hydrolysate. J Food Drug Anal 25:550–558PubMedCrossRefGoogle Scholar
  99. Hosseini SS, Khodaiyan F, Yarmand MS (2016) Optimization of microwave assisted extraction of pectin from sour orange peel and its physicochemical properties. Carbohydr Polym 140:59–65PubMedCrossRefGoogle Scholar
  100. Hotchkiss AT, Olano-Martin E, William EG, Gibson GR, Rastall RA (2003) Pectic oligosaccharides as prebiotics. In: Eggleston G, Cote GL (eds) Oligosaccharides in food and agriculture, ACS symposium series, vol 849. American Chemical Society, Washington, pp 54–62CrossRefGoogle Scholar
  101. Houghteling PD, Walker WA (2015) Why is initial bacterial colonization of the intestine important to the infant’s and child’s health? J Pediatr Gastroenterol Nutr 60:294–307PubMedPubMedCentralCrossRefGoogle Scholar
  102. Hu K, Liu Q, Wang S, Ding K (2009) New oligosaccharides prepared by acidhydrolysis of the polysaccharides from Nerium indicum Mill and theirantiangiogenesis activities. Carbohydr Res 344:198–203PubMedCrossRefGoogle Scholar
  103. Hughes SA, Shewry PR, Li L, Gibson GR, Sanz ML et al (2007) In vitro fermentation by human fecal microflora of wheat arabinoxylans. J Agric Food Chem 55:4589–4595PubMedCrossRefGoogle Scholar
  104. Hutkins RW, Krumbeck JA, Bindels LB, Cani PD, Fahey G Jr, Goh YJ et al (2016) Prebiotics: why definitions matter. Curr Opin Biotechnol 37:1–7PubMedCrossRefGoogle Scholar
  105. Immerzeel P, Falck P, Galbe M, Adlercreutz P, Karlsson EN, Stålbrand H (2014) Extraction of water-soluble xylan from wheat bran and utilization of enzymatically produced xylooligosaccharides by Lactobacillus, Bifidobacterium and Weissella spp. LWT Food Sci Technol 56:321–327CrossRefGoogle Scholar
  106. Intanon M, Arreola SL, Pham NH, Kneifel W, Haltrich D, Nguyen TH (2014) Nature and biosynthesis of galacto-oligosaccharides related to oligosaccharides in human breast milk. FEMS Microbiol Lett 353:89–97PubMedPubMedCentralCrossRefGoogle Scholar
  107. Ito T, Katayama T, Hattie M, Sakurama H, Wada J, Suzuki R, Ashisa H, Wakagi T, Yamamto K, Stubbs KA, Fushionobu S (2013) Crystal structures of a glycoside hydrolase family 20 lacto-n-biosidase from bifidobacterium bifidum. J Biol Chem 288:11795–11806PubMedPubMedCentralCrossRefGoogle Scholar
  108. Izydorczyk MS, Biliaderis CG (2007) Arabinoxylans: technologically and nutritionally functional plant polysaccharides. In: Functional food carbohydrates. CRC Press Taylor & Francis Group, Boca Raton, FL, pp 249–290Google Scholar
  109. Izydorczyk MS, Dexter JE (2008) Barley b-glucans and arabinoxylans: molecular structure, physicochemical properties, and uses in food products—a review. Food Res Int 41:850–868CrossRefGoogle Scholar
  110. Jantscher-Krenn E, Bode L (2012) Human milk oligosaccharides and their potential benefits for the breast-fed neonate. Minerva Pediatr 64:83–99PubMedGoogle Scholar
  111. Jantscher-Krenn E, Lauwae T, Bliss LA, Reed SL, Gillin FD, Bode L (2012) Human milk oligosaccharides reduce Entamoeba histolytica attachment and cytotoxicity in vitro. Br J Nutr 108:1839–1846PubMedCrossRefGoogle Scholar
  112. Jensen NS, Canale-Parola E (1986) Bacteroides pectinophilus sp. nov. and Bacteroides galacturonicus sp. nov.: two pectinolytic bacteria from the human intestinal tract. Appl Environ Microbiol 52:880–887PubMedPubMedCentralGoogle Scholar
  113. Jiang H, Ling Z, Zhang Y, Mao H, Ma Z, Yin Y et al (2015) Altered fecal microbiota composition in patients with major depressive disorder. Brain Behav Immun 48:186–194PubMedCrossRefGoogle Scholar
  114. Jongbin L, Jiyoung Y, Ko S, Lee S (2012) Extraction and characterization ofpectin from Yuza (Citrus junos) pomace: a comparison of conventional-chemical and combined physical-enzymatic extractions. Food Hydrocoll 29:160–165CrossRefGoogle Scholar
  115. Kabel MA, Kortenoeven L, Schols HA, Voragen AG (2002) In vitro fermentability of differently substituted xylo-oligosaccharides. J Agric Food Chem 50:6205–6210PubMedCrossRefGoogle Scholar
  116. Khodaei N, Karboune S (2013) Extraction and structural characterisation of rhamnogalacturonan I-type pectic polysaccharides from potato cell wall. Food Chem 139:617–623PubMedCrossRefGoogle Scholar
  117. Khodaei N, Fernandez B, Fliss I, Karboune S (2016) Digestibility and prebiotic properties of potato rhamnogalacturonan Ipolysaccharide and its galactose-rich oligosaccharides/oligomers. Carbohydr Polym 136:1074–1084PubMedCrossRefGoogle Scholar
  118. Khuwijitjaru P, Watsanit K, Adachi S (2012) Carbohydrate content and composition of product from subcritical water treatment of coconut meal. J Ind Eng Chem 18:225–229CrossRefGoogle Scholar
  119. Koubala BB, Christiaens S, Kansci G, Loey AMV, Hendrickx ME (2014) Isolation and structural characterisation of papaya peel pectin. Food Res Int 55:215–221CrossRefGoogle Scholar
  120. Kukkonen K, Savilahti E, Haahtela T, Juntunen-Backman K, Korpela R, Poussa T, Tuure T, Kuitunen M (2007) Probiotics and prebiotic galactooligosaccharides in the prevention of allergic diseases: a randomized, double-blind, placebo-controlled trial. J Allergy Clin Immunol 119:192–198PubMedCrossRefGoogle Scholar
  121. Kunz C (2012) Historical aspects of human milk oligosaccharides. Adv Nutr 3(Suppl):430S–439SPubMedPubMedCentralCrossRefGoogle Scholar
  122. Kunz C, Rudloff S, Baier W, Klein N, Strobel S (2000) Oligosaccharides in human milk: structural, functional, and metabolic aspects. Annu Rev Nutr 20:699–722PubMedCrossRefGoogle Scholar
  123. Kutty PK (2016) Breastfeeding and risk of parasitic infection—a review. Asian Pac J Trop Biomed 4:847–858CrossRefGoogle Scholar
  124. Labourel A, Crouch LI, Bras JLA, Jackson A, Rogowski A, Gray J et al (2016) The mechanism by which arabinoxylanases can recognize highly decorated xylans. J Biol Chem 291:22149–22159PubMedPubMedCentralCrossRefGoogle Scholar
  125. Lama-Muñoz A, Rodríguez-Gutiérrez G, Rubio-Senent F, Fernández-Bolaños J (2012) Production, characterization and isolation of neutral and pectic oligosaccharides with low molecular weights from olive by-products thermally treated. Food Hydrocoll 28:92–104CrossRefGoogle Scholar
  126. Lamsal B (2012) Production, health aspects and potential food uses of dairy prebiotic galactooligosaccharides. J Sci Food Agric 92:2020–2028PubMedCrossRefGoogle Scholar
  127. Lee JS, Synytsya A, Kim HB, Choi DJ, Lee S, Lee J et al (2013) Purification, characterization and immune-modulating activity of a pectic polysaccharide isolated from Korean mulberry fruit Oddi (Morus alba L.). Int Immunopharmacol 17:858–866PubMedCrossRefGoogle Scholar
  128. Lee EH, Park H-R, Shin M-S, Cho SY, Choi H-J, Shin K-S (2014) Antitumor metastasis activity of pectic polysaccharide purified from the peels of Korean Citrus Hallabong. Carbohydr Polym 111:72–79PubMedCrossRefGoogle Scholar
  129. Leijdekkers AGM, Aguirre M, Venema K, Bosch G, Gruppen H, Schols HA (2014) In vitro fermentability of sugar beet pulp derived oligosaccharides using human and pig fecal inocula. J Agric Food Chem 62:1079–1087PubMedCrossRefGoogle Scholar
  130. Li Y, Wang YJ, Wang L, Jiang KY (2008) Influence of several non-nutrient additives on nonspecific immunity and growth of juvenile turbot, Scophthalmus maximus L. Aquac Nutr 14:387–395CrossRefGoogle Scholar
  131. Li J, Liu X, Zhou B, Zhao J, Li S (2013) Determination of fructooligosaccharides in burdock using HPLC and microwave-assisted extraction. J Agric Food Chem 61:5888–5892PubMedCrossRefPubMedCentralGoogle Scholar
  132. Li J, Hu D, Zong W, Lv G, Li S (2014) Determination of inulin-type fructooligosaccharides in edible plants by high-performance liquid chromatography with charged aerosol detector. J Agric Food Chem 62:7707–7713PubMedCrossRefPubMedCentralGoogle Scholar
  133. Lis-Kuberka J, Berghausen-Mazurb M, Orczyk-Pawiłowicz M (2017) Alpha 2, 3- and alpha 2,6-sialylation of human skim milk glycoproteins during milk maturation. J Appl Biomed 15:196–203CrossRefGoogle Scholar
  134. Liu D, Zhang L, Xu Y, Zhang X (2013) The influence of ultrasound on the structure, rheological properties and degradation path of citrus pectin. Proc Meet Acoust 19:045092CrossRefGoogle Scholar
  135. Liu JH, Xu QH, Zhang JJ, Zhou XX et al (2015) Preparation, composition analysis and antioxidant activities of konjacoligo-glucomannan. Carbohydr Polym 130:398–404PubMedCrossRefPubMedCentralGoogle Scholar
  136. Liu C, Cheng FF, Wang JM, Wan ZL, Sun YE, Yang XQ (2016) Preparation and characterization of surface-active pectin from soya hulls by phosphate-assisted subcritical water combined with ultrasonic treatment. Int J Food Sci Technol 51:61–68CrossRefGoogle Scholar
  137. Liu Z, Qiao L, Yang F, Gu H, Yang L (2017) Bronsted acidic ionic liquid based ultrasound-microwave synergistic extraction of pectin from pomelo peels. Int J Biol Macromol 94:309–318PubMedCrossRefPubMedCentralGoogle Scholar
  138. Lorenzoni ASG, Aydos LF, Klein MP, Rodrigues RC, Hertz PF (2014) Fructooligosaccharides synthesis by highly stable immobilized β-fructofuranosidase from Aspergillus aculeatus. Carbohydr Polym 103:193–197PubMedCrossRefPubMedCentralGoogle Scholar
  139. Macfarlane GT, Steed H, Macfarlane S (2008) Bacterial metabolism and health-related effects of galacto-oligosaccharides and other prebiotics. J Appl Microbiol 104:305–344PubMedPubMedCentralGoogle Scholar
  140. Maes C, Delcour JA (2002) Structural characterisation of water-extractable and water-unextractable arabinoxylans in wheat bran. J Cereal Sci 35:315–326CrossRefGoogle Scholar
  141. Maliniak A, Widmalm G (2014) Structural analysis of carbohydrates by nuclear magnetic resonance spectroscopy and molecular simulations: application to human milk ligosaccharides. In: Moreno FJ, Sanz ML (eds) Food oligosaccharides: production, analysis and bioactivity. Wiley, Chichester, UKGoogle Scholar
  142. Mandalari G, Nueno Palop C, Tuohy K, Gibson GR, Bennett RN, Waldron KW (2007) In vitro evaluation of the prebiotic activity of a pectic oligosaccharide-rich extract enzymatically derived from bergamot peel. Appl Environ Microbiol 73:1173–1179Google Scholar
  143. Manderson K, Pinart M, Tuohy KM, Grace WE, Hotchkiss AT, Widmer W et al (2005) In vitro determination of prebiotic properties of oligosaccharides derived from an orange juice manufacturing by-product stream. Appl Environ Microbiol 71:8383–8389PubMedPubMedCentralCrossRefGoogle Scholar
  144. Mantovanl V, Galeotti F, Maccari F, Volpl N (2016) Recent advances on separation and characterization of human milk oligosaccharides. Electrophoresis 73:1514–1524CrossRefGoogle Scholar
  145. Maran JP, Priya B (2015) Ultrasound assisted extraction of pectin from sisal waste. Carbohydr Polym 115:732–738PubMedCrossRefGoogle Scholar
  146. Marcobal A, Barboza M, Froehlich JW, Block DE, German JB, Lebrilla CB (2010) Consumption of human milk oligosaccharides by gut-related microbes. J Agric Food Chem 58:5334–5340PubMedPubMedCentralCrossRefGoogle Scholar
  147. Martin CR, Ling PR, Blackburn GL (2016) Review of infant feeding: key features of breast milk and infant formula. Nutrients 8:279.  https://doi.org/10.3390/nu8050279CrossRefPubMedCentralGoogle Scholar
  148. Martínez M, Yáñez R, Alonsó JL, Parajó JC (2010) Chemical production of pectic oligosaccharides from orange peel wastes. Ind Eng Chem Res 49:8470–8476CrossRefGoogle Scholar
  149. Marx C, Bridge R, Wolf AK, Rich W, Kim JH, Bode L (2014) Human milk oligosaccharide composition differs between donor milk and mother’s own milk in the NICU. J Hum Lact 30:54–61PubMedCrossRefPubMedCentralGoogle Scholar
  150. Matsuura Y (1991) Pectic acid degrading enzymes from human feces. Agric Biol Chem 55:885–886Google Scholar
  151. McLaughlin HP, Motherway MO, Lakshminarayanan B, Stanton C, Ross RP et al (2015) Carbohydrate catabolic diversity of bifidobacteria and lactobacilli of human origin. Int J Food Microbiol 203:109–121PubMedCrossRefPubMedCentralGoogle Scholar
  152. Meyer TW, Hostetter TH (2012) Uremic solutes from colon microbes. Kidney Int 81:949–954PubMedCrossRefPubMedCentralGoogle Scholar
  153. Michalak M, Thomassen LV, Roytio H, Ouwehand AC, Meyer AS, Mikkelsen JD (2012) Expression and characterization of an endo-1,4-β-galactanase from Emericella nidulans and Pichia pastoris for enzymatic design of potentially prebiotic oligosaccharides from potato galactans. Enzym Microb Technol 50, 121–129Google Scholar
  154. Míguez B, Gómez B, Gullón P, Gullón B, Alonso JL (2016) Pectic oligosaccharides and other emerging prebiotics. In: Rao V, Rao LG (eds) Prebiotics and probiotics in human nutrition and health. InTech, RijekaGoogle Scholar
  155. Miyauchi E, O’Callaghan J, Butto LF, Hurley G, Melgar S, Tanabe S et al (2012) Mechanism of protection of transepithelial barrier function by Lactobacillus salivarius: strain dependence and attenuation by bacteriocin production. Am J Physiol Gastrointest Liver Physiol 303:G1029–G1041PubMedCrossRefPubMedCentralGoogle Scholar
  156. Monobe M, Maeda-Yamamoto M, Matsuoka Y, Kaneko A, Hiramoto S (2008) Immunostimulating activity and molecular weight dependence of an arabinoxylan derived from wheat bran. J Jpn Soc Food Sci Technol/Nippon Shokuhin Kagaku Kogaku Kaishi 55:245–249CrossRefGoogle Scholar
  157. Moon JS, Li L, Bang J, Soo Han N (2016) Application of in vitro gut fermentation models to food components: a review. Food Sci Biotechnol 25:1–7CrossRefGoogle Scholar
  158. Moreno FJ, Corzo N, Montilla A, Villamiel M, Olano A (2017) Current state and latest advances in the concept, production and functionality of prebiotic oligosaccharides. Curr Opin Food Sci 13:50–55CrossRefGoogle Scholar
  159. Morgan NK, Wallace A, Bedford MR, Choct M (2017) Efficiency of xylanases from families 10 and 11 in production of xylo-oligosaccharides from wheat arabinoxylans. Carbohydr Polym 167:290–296PubMedCrossRefPubMedCentralGoogle Scholar
  160. Morrison DJ, Preston T (2016) Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism. Gut Microbes 7:189–200PubMedPubMedCentralCrossRefGoogle Scholar
  161. Morrow AL, Ruiz-Palacios GM, Altaye M, Jiang X, Guerrero ML, Meinzen-Derr JK et al (2004) Human milk oligosaccharides are associated with protection against diarrhea in breast-fed infants. J Pediatr 145:297–303PubMedCrossRefPubMedCentralGoogle Scholar
  162. Musilova S, Rada V, Vlkova E, Bunesova V (2014) Beneficial effects of human milk oligosaccharides on gut microbiota. Benefic Microbes 5:273–283CrossRefGoogle Scholar
  163. Mussatto SI, Mancilha IM (2007) Nondigestible oligosaccharides: a review. Carbohydr Polym 68:587–597CrossRefGoogle Scholar
  164. Naqash F, Masoodi FA, Rather SA, Wani SM, Gani A (2017) Emerging concepts in the nutraceutical and functional properties of Pectin—a review. Carbohydr Polym 168:227–239PubMedCrossRefPubMedCentralGoogle Scholar
  165. Neyrinck AM, Delzenne NM (2010) Potential interest of gut microbial changes induced by non-digestible carbohydrates of wheat in the management of obesity and related disorders. Curr Opin Clin Nutr Metab Care 13:722–728PubMedCrossRefPubMedCentralGoogle Scholar
  166. Neyrinck AM, Possemiers S, Druart C, Van de Wiele T, De Backer F et al (2011) Prebiotic effects of wheat arabinoxylan related to the increase in bifidobacteria, roseburia and bacteroides/prevotella in diet-induced obese mice. PLoS One 6:e20944PubMedPubMedCentralCrossRefGoogle Scholar
  167. Nicholson JK, Holmes E, Kinross J, Burcelin R, Gibson G, Jia W et al (2012) Host-gut microbiota metabolic interactions. Science 336:1262–1267PubMedCrossRefPubMedCentralGoogle Scholar
  168. Niittynen L, Kajander K, Korpela R (2007) Galacto-oligosaccharides and bowel function. Scand J Food Nutr 51:62–66PubMedCentralCrossRefGoogle Scholar
  169. Nishinari K, Takemasa M, Zhang H, Takahashi R (2007) Storage plant polysaccharides: xyloglucans, galactomannans, glucomannans. In: Kamerling JP (ed) Comprehensive glycoscience. Elsevier, pp 613–623Google Scholar
  170. O’Callaghan A, van Sinderen D (2016) Bifidobacteria and their role as members of the human gut microbiota. Front Microbiol 7:925PubMedPubMedCentralGoogle Scholar
  171. Oechslin R, Lutz M, Amado R (2003) Pectic substances isolated from apple cellulosic residue: Structural characterization of a new type of rhamnogalacturonan I. Carbohydr Polym 51:301–310CrossRefGoogle Scholar
  172. Olano-Martin E, Williams MR, Gibson GR, Rastall RA (2003) Pectins and pectic oligosaccharides inhibit Escherichia coli O157:H7 Shiga toxin as directed towards the human colonic cell line HT29. FEMS Microbiol Lett 218:101–105PubMedCrossRefPubMedCentralGoogle Scholar
  173. Oliveira D, Wilbey RA, Grandison AS, Roseiro LB (2015) Milk oligosaccharides: a review. Int J Dairy Technol 68:305–321CrossRefGoogle Scholar
  174. Olveira G, González-Molero I (2016) An update on probiotics, prebiotics and symbiotics in clinical nutrition. Endocrinol Nutr 63:482–494PubMedCrossRefPubMedCentralGoogle Scholar
  175. Ooi LG, Liong M-T (2010) Cholesterol-lowering effects of probiotics and prebiotics: a review of in vivo and in vitro findings. Int J Mol Sci 11:2499–2522PubMedPubMedCentralCrossRefGoogle Scholar
  176. Otieno DO (2010) Synthesis of β-galactooligosaccharides from lactose using microbial β-galactosidases. Compr Rev Food Sci Food Saf 9:471–482CrossRefGoogle Scholar
  177. Palframan R, Gibson GR, Rastall RA (2003) Development of a quantitative tool for the comparison of the prebiotic effect of dietary oligosaccharides. Lett Appl Microbiol 37(4):281–284PubMedCrossRefGoogle Scholar
  178. Pandey KR, Naik SR, Vakil BV (2015) Probiotics, prebiotics and synbiotics—a review. J Food Sci Technol 52:7577–7587PubMedPubMedCentralCrossRefGoogle Scholar
  179. Parkar SG, Redgate EL, Wibisono R, Luo X, Koh ETH, Schroder R (2010) Gut health benefits of kiwifruit pectins: comparison with commercial functional polysaccharides. J Funct Foods 2:210–218CrossRefGoogle Scholar
  180. Patterson JA, Burkholder KM (2003) Application of prebiotics and probiotics in poultry production. Poult Sci 82:627–631PubMedCrossRefGoogle Scholar
  181. Petschacher B, Nidetzky B (2016) Biotechnological production of fucosylated human milk oligosaccharides: prokaryotic fucosyltransferases and their use in biocatalytic cascades or whole cell conversion systems. J Biotechnol 235:61–83PubMedCrossRefGoogle Scholar
  182. Poesen R, Evenepoel P, de Loor H, Delcour JA, Courtin CM et al (2016) The influence of prebiotic arabinoxylan oligosaccharides on microbiota derived uremic retention solutes in patients with chronic kidney disease: a randomized controlled trial. PLoS One 11(4):e0153893.  https://doi.org/10.1371/journal.pone.0153893CrossRefPubMedPubMedCentralGoogle Scholar
  183. Pokusaeva K, Fitzgerald GF, van Sinderen D (2011) Carbohydrate metabolism in bifidobacteria. Genes Nutr 6:285–306PubMedPubMedCentralCrossRefGoogle Scholar
  184. Ragaee SM, Campbell GL, Scoles GJ, McLeod JG, Tyler RT (2001) Studies on rye (Secale cereale L.) lines exhibiting a range of extract viscosities. 2. Rheological and baking characteristics of rye and rye/wheat blends and feeding value for chicks of wholemeals and breads. J Agric Food Chem 49:2446–2453PubMedCrossRefGoogle Scholar
  185. Rajagopalan G, Shanmugavelu K, Yang K-L (2016) Production of xylooligosaccharides from hardwood xylan by using immobilized endoxylanase of Clostridium strain BOH3. RSC Adv 6:81818–81825CrossRefGoogle Scholar
  186. Ravn JL, Thøgersen JC, Eklöf J, Pettersson D, Ducatelle R, Immerseel FV, Pedersen NR (2017) GH11 xylanase increases prebiotic oligosaccharides from wheat bran favouring butyrate-producing bacteria in vitro. Anim Feed Sci Technol 226:113–123CrossRefGoogle Scholar
  187. Redgwell RJ, Fischer M (2005) Dietary fiber as a versatile food component: an industrial perspective. Mol Nutr Food Res 49:421–535CrossRefGoogle Scholar
  188. Rhoades J, Manderson K, Wells A, Hotchkiss AT, Gibson GR, Formentin K et al (2008) Oligosaccharide-mediated inhibition of the adhesion of pathogenic Escherichia coli strains to human gut epithelial cells in vitro. J Food Prot 71:2272–2277PubMedCrossRefGoogle Scholar
  189. Ríos-Covián D, Ruas-Madiedo P, Margolles A, Gueimonde M, de los Reyes-Gavilán CG, Salazar N (2016) Intestinal short chain fatty acids and their link with diet and human health. Front Microbiol 7:185PubMedPubMedCentralCrossRefGoogle Scholar
  190. Rivas S, Gullón B, Gullón P, Parajó JC (2012) Manufacture and properties of bifidogenic saccharides derived from wood mannan. J Agric Food Chem 60:4296–4305PubMedCrossRefGoogle Scholar
  191. Roberfroid M, Gibson GR, Hoyles L, McCartney AL, Rastall R, Rowland I et al (2010) Prebiotic effects: metabolic and health benefits. Br J Nutr 104(Suppl 2):S1–S63PubMedCrossRefGoogle Scholar
  192. Rodriguez-Cabezas ME, Camuesco D, Arribas B, Garrido-Mesa N, Comalada M, Bailon E et al (2010) The combination of fructooligosaccharides and resistant starch shows prebiotic additive effects in rats. Clin Nutr 29:832–839PubMedCrossRefGoogle Scholar
  193. Rodriguez-Colinas B, Poveda A, Jimenez-Barbero J, Ballesteros AO, Plou FJ (2012) Galacto-oligosaccharide synthesis from lactose solution or skim milk using the β-galactosidase from Bacillus circulans. J Agric Food Chem 60:6391–6398PubMedCrossRefGoogle Scholar
  194. Rodriguez-Colinas B, Fernandez-Arrojo L, Santos-Moriano P, Ballesteros AO, Plou FJ (2016) Continuous packed bed reactor with immobilized β-Galactosidase for production of galactooligosaccharides (GOS). Catalysts 6:189.  https://doi.org/10.3390/catal6120189CrossRefGoogle Scholar
  195. Rose DJ (2011) Autohydrolytic production of feruloylated arabinoxylan hydrolysates from cereal processing coproducts for food applications. In: Awika J, Piironen V, Bean S (eds) Advances in cereal science: implications to food processing and health promotion, vol 1089. America Chemical Society, Washington, DC, pp 111–130CrossRefGoogle Scholar
  196. Ruhaak LR, Stroble C, Underwoodm MA, Lebrilla CB (2014) Detection of milk oligosaccharides in plasma of infants. Anal Bioanal Chem 406:5775–5784PubMedPubMedCentralCrossRefGoogle Scholar
  197. Ruiz-Moyano S, Totten SM, Garrido DA, Smilowitz JT, German JB, Lebrilla CB, Mills DA (2013) Variation in consumption of human milk oligosaccharides by infant gut-associated strains of Bifidobacterium breve. Appl Environ Microbiol 79:6040–6049PubMedPubMedCentralCrossRefGoogle Scholar
  198. Sabater-Molina M, Larqué E, Torrella F, Zamora S (2009) Dietary fructooligosaccharides and potential benefits on health. J Physiol Biochem 65:315–328PubMedCrossRefGoogle Scholar
  199. Sangeetha PT, Ramesh MN, Prapulla SG (2005) Recent trends in the microbial production, analysis and application of fructooligosaccharides. Trends Food Sci Technol 16:442–457CrossRefGoogle Scholar
  200. Sangwan V, Tomar SK, Singh RRB, Singh AK, Ali B (2011) Galactooligosaccharides: novel components of designer foods. J Food Sci 76:R103–R111PubMedCrossRefGoogle Scholar
  201. Saulnier L, Thibault JF (1999) Ferulic acid and diferulic acids as components of sugar-beet pectins and maize bran heteroxylans. J Sci Food Agric 79:396–402CrossRefGoogle Scholar
  202. Scheperjans F, Aho V, Pereira PAB, Koskinen K, Paulin L, Pekkonen E et al (2015) Gut microbiota are related to Parkinson’s disease and clinical phenotype. Mov Disord 30:350–358PubMedCrossRefGoogle Scholar
  203. Schley PD, Field CJ (2002) The immune-enhancing effects of dietary fibres and prebiotics. Br J Nutr 87(Suppl. 2):S221–S230PubMedCrossRefGoogle Scholar
  204. Scholz-Ahrens KE, Ade P, Marten B, Weber P, Timm WY, Gluer CC, Schrezenmeir J (2007) Prebiotics, probiotics, and synbiotics affect mineral absorption, bone mineral content, and bone structure. J Nutr 137:838S–846SPubMedCrossRefGoogle Scholar
  205. Severini C, Azzollini D, Jouppila K, Jussi L, Derossi A (2015) Effect of enzymatic and technological treatments on solubilisation of arabinoxylans from brewer’s spent grain. J Cereal Sci 65:162–166CrossRefGoogle Scholar
  206. Sheridan PO, Bindels LB, Saulnier DM, Reid G, Nova E, Holmgren K et al (2014) Can prebiotics and probiotics improve therapeutic outcomes for undernourished individuals? Gut Microbes 5:74–82PubMedCrossRefGoogle Scholar
  207. Shoaf K, Mulvey GL, Armstrong GD, Hutkins RW (2006) Prebiotic galactooligosaccharides reduce adherence of enteropathogenic Escherichia coli to tissue culture cells. Infect Immun 74:6920–6928PubMedPubMedCentralCrossRefGoogle Scholar
  208. Silva E, Birkenhake M, Scholten E, Sagis LMC, van der Linden E (2013) Controlling rheology and structure of sweet potato starch noodles with high broccoli powder content by hydrocolloids. Food Hydrocoll 30:42–52CrossRefGoogle Scholar
  209. Slavin J (2013) Fiber and prebiotics: mechanisms and health benefits. Nutrients 5:1417–1435PubMedPubMedCentralCrossRefGoogle Scholar
  210. Smilowitz JT, Lebrilla CB, Mills DA, German JB, Freeman SL (2014) Breast milk oligosaccharides: structure-function relationships in the neonate. Annu Rev Nutr 34:14.1–14.27CrossRefGoogle Scholar
  211. Smith-Brown P, Morrison M, Krause L, Davies PS (2016) Mother’s secretor status affects development of childrens microbiota composition and function: a pilot study. PLoS One 11:e0161211PubMedPubMedCentralCrossRefGoogle Scholar
  212. Sousa V, Santos E, Sgarbieri V (2011) The importance of prebiotics in functional foods and clinical practice. Food Nutr Sci 2:133–144Google Scholar
  213. Sousa AG, Nielsen HL, Armagan I, Larsen J, Sorensen SO (2015) The impact of rhamnogalacturonan-I side chain monosaccharides on the rheological properties of citrus pectin. Food Hydrocoll 47:130–139CrossRefGoogle Scholar
  214. Sridevi V, Sumathi V, Guru Prasad M, Satish Kumar M (2014) Fructooligosaccharides—type prebiotic: a Review. J Pharm Res 8:321–330Google Scholar
  215. Surin S, Seesuriyachan P, Thakeow P, Phimolsiripol Y (2012) Optimization of enzymatic production of fructooligosaccharides. J Appl Sci 12:1118–1123CrossRefGoogle Scholar
  216. Swennen K, Courtin CM, Lindemans GCJE, Delcour JA (2006) Large-scale production and characterisation of wheat bran arabinoxylooligosaccharides. J Sci Food Agric 86:1722–1731CrossRefGoogle Scholar
  217. Tester RF, Al-Ghazzewi FH (2010) Utilisation of glucomannans for health. In: Hollingworth CS (ed) Food hydrocolloids: characteristics, properties and structures. Nova Science Publishers, Hauppauge, NY, pp 243–252Google Scholar
  218. Thomson P, Medina DA, Garrido D (2017) Human milk oligosaccharides and infant gut bifidobacteria: molecular strategies for their utilization. Food Microbiol.  https://doi.org/10.1016/j.fm.2017.09.001
  219. Thurl S, Munzert M, Henker J, Boehm G, Muller-Werner B, Jelinek J, Stahl B (2010) Variation of human milk oligosaccharides in relation to milk groups and lactational periods. Br J Nutr 104:1261–1271PubMedCrossRefGoogle Scholar
  220. Tian L, Scholte J, Borewicz K, van den Bogert B, Smidt H, Scheurink AJW et al (2016) Effects of pectin supplementation on the fermentation patterns of different structural carbohydrates in rats. Mol Nutr Food Res 60:2256–2266PubMedCrossRefGoogle Scholar
  221. Torres DPM, Goncalves M d PF, Teixeira JA, Rodrigues LR (2010) Galacto-oligosaccharides: production, properties, applications, and significance as prebiotics. Compr Rev Food Sci Food Saf 9:438–454CrossRefGoogle Scholar
  222. Turroni F, Ventura M, Butto LF, Duranti S, O’Toole PW, Motherway MO, van Sinderen D (2014) Molecular dialogue between the human gut microbiota and the host: a Lactobacillus and Bifidobacterium perspective. Cell Mol Life Sci 71:183–203PubMedCrossRefGoogle Scholar
  223. Underwood M, German JB, Lebrilla CB, Mills DA (2015) Bifidobacterium longum subspecies infantis: champion colonizer of the infant gut. Pediatr Res 77:229–235PubMedCrossRefGoogle Scholar
  224. van Craeyveld V, Swennen K, Dornez E et al (2008) Structurally different wheat-derived arabinoxylooligosaccharides have different prebiotic and fermentation properties in rats. J Nutr 138:2348–2355PubMedCrossRefGoogle Scholar
  225. van Craeyveld V, Dornez E, Holopainen U, Selinheimo E, Poutanen K et al (2010) Wheat bran AX properties and choice of xylanase affect enzymic production of wheat bran derived arabinoxylan-oligosaccharidesaccharides. Cereal Chem 87:283–291CrossRefGoogle Scholar
  226. van de Wiele T, Boon N, Possemiers S, Jacob H, Verstrate W (2007) Inulin-type fructans of longer degree of polymerization exert more pronounced in vitro prebiotic effects. J Appl Microbiol 102:452–460PubMedGoogle Scholar
  227. van den Abbeele P, Van de Wiele T, Grootaert C, Verstraete W, Gerard P et al (2009) Arabinoxylans and inulin modulate the luminal and mucosaassociated bacteria in vitro and in vivo. In: McCleary B, Jones JM, Topping D, van der Kamp JW (eds) Dietary fibre—new frontiers for food and health. Academic Publishers, Wageningen, pp 233–249Google Scholar
  228. van den Heuvela EGHM, Muijsa T, Brouns F, Hendriksa HFJ (2009) Short-chain fructo-oligosaccharides improve magnesium absorption in adolescent girls with a low calcium intake. Nutr Res 29:229–237CrossRefGoogle Scholar
  229. Venema K (2012) Intestinal fermentation of lactose and prebiotic lactose derivatives, including human milk oligosaccharides. Int Dairy J 22:123–140CrossRefGoogle Scholar
  230. Vera C, Guerrero C, Conejeros R, lllanes A (2012) Synthesis of galactoligosaccharides by β-galactosidase from Aspergillus oryzae using partially dissolved and supersaturated solution of lactose. Enzym Microb Technol 50:188–194CrossRefGoogle Scholar
  231. Villamiel M, Montilla A, Olano A, Corzo N (2014) Production and bioactivity of oligosaccharides derived from lactose. In: Moreno FJ, Sanz ML (eds) Food oligosaccharides: production, analysis and bioactivity. Wiley-Blackwell, pp 137–167Google Scholar
  232. Wall R, Fitzgerald G, Hussey S, Ryan T, Murphy B, Ross P, Stanton C (2007) Genomic diversity of cultivable Lactobacillus populations residing in the neonatal and adult gastrointestinal tract. FEMS Microbiol Ecol 59:127–137PubMedCrossRefGoogle Scholar
  233. Wang B (2009) Sialic acid is an essential nutrient for brain development and cognition. Annu Rev Nutr 29:177–222PubMedCrossRefGoogle Scholar
  234. Wang D, Wang S-A (2016) A one-step bioprocess for production of high-content fructo-oligosaccharides from inulin by yeast. Carbohydr Polym 151:1220–1226PubMedCrossRefGoogle Scholar
  235. Wang M, van Vliet T, Hamer RJ (2004) How gluten properties are affected by pentosans. J Cereal Sci 39:395–402CrossRefGoogle Scholar
  236. Wang Y, Zeng T, Wang SE, Wang Q, Yu HX (2010) Fructo-oligosaccharides enhance the mineral absorption and counteract the adverse effects of phytic acid in mice. Nutrition 26:305–311PubMedCrossRefGoogle Scholar
  237. Wang X, Chen Q, Lu¨ X (2014) Pectin extracted from apple pomace and citrus peel by subcritical water. Food Hydrocoll 38:129–137CrossRefGoogle Scholar
  238. Wang W, Ma X, Xu Y, Cao Y, Jiang Z, Ding T et al (2015a) Ultrasound-assisted heating extraction of pectin from grapefruit peel: optimization and comparison with the conventional method. Food Chem 178:106–114PubMedCrossRefGoogle Scholar
  239. Wang Y, Jiang K, Ma H, Zeng W, Wang PG, Yao N, Han W et al (2015b) Enzymatic production of HMO mimics by the sialylation of galacto-oligosaccharides. Food Chem 181:51–56PubMedCrossRefGoogle Scholar
  240. Watson D, O’Connell Motherway M, Schoterman MH, van Neerven RJ, Nauta A, van Sinderen D (2013) Selective carbohydrate utilization by lactobacilli and bifidobacteria. J Appl Microbiol 114:1132–1146PubMedCrossRefGoogle Scholar
  241. Wickramasinghe S, Pacheco AR, Lemay DG, Mills DA (2015) Bifidobacteria grown on human milk oligosaccharides downregulate the expression of inflammation-related genes in Caco-2 cells. BMC Microbiol 15:172PubMedPubMedCentralCrossRefGoogle Scholar
  242. Wu LD, Ruhaak LR, Lebrilla CB (2017) Analysis of milk oligosaccharides by mass spectrometry. Methods Mol Biol 1503:121–129PubMedCrossRefGoogle Scholar
  243. Xu ZR, Zou XT, Hu CH, Xia MS, Zhan XA, Wang MQ (2002) Effects of dietary fructooligosaccharide on digestive enzyme activities, intestinal microflora and morphology of growing pigs. Asian Australas J Anim Sci 15:1784–1789CrossRefGoogle Scholar
  244. Xu BH, Wang YB, Li JR, Lin Q (2009) Effect of prebiotic xylooligosaccharides on growth performances and digestive enzyme activities of allogynogenetic crucian carp (Carassius auratus gibelio). Fish Physiol Biochem 35:351–357PubMedCrossRefGoogle Scholar
  245. Xu M, Li D-S, Li L, Wang C, Zhu Y-P, Lv W-P, Xie B-J (2013) Comparative study on molecular weight of konjac glucomannan by gel permeation chromatography-laser light scattering-refractive index and laser light-scattering methods. J Spectrosc 2013:685698Google Scholar
  246. Yan J, Ding J, Liang X (2017) Chromatographic methods for the analysis of oligosaccharides in human milk. Anal Methods 9:1071–1077CrossRefGoogle Scholar
  247. Yang B, Chuang H, Chen RF (2012) Protection from viral infections by human milk oligosaccharides: direct blockade and indirect modulation of intestinal ecology and immune reactions. Open Glycosci 5:19–25CrossRefGoogle Scholar
  248. Yang J, Vittori N, Wang W-W, Shi Y-C, Hoeflinger JL, Miller MJ, Pan Y (2017) Molecular weight distribution and fermentation of mechanically pre-treated konjac enzymatic hydrolysates. Carbohydr Polym 159:58–65PubMedCrossRefGoogle Scholar
  249. Yapo BM (2011) Pectic substances: from simple pectic polysaccharides to complex pectins—a new hypothetical model. Carbohydr Polym 86:373–385CrossRefGoogle Scholar
  250. Yuliarti O, Goh KKT, Matia-Merino L, Mawson J, Brennan C (2015) Extraction and characterisation of pomace pectin from gold kiwifruit (Actinidiachinensis). Food Chem 187:290–296PubMedCrossRefGoogle Scholar
  251. Zhang Y, Pitkänen L, Douglade J, Tenkanen M, Remond C, Joly C (2011) Wheat bran arabinoxylans: chemical structure and film properties of three isolated fractions. Carbohydr Polym 86:852–859CrossRefGoogle Scholar
  252. Zhang L, Ye X, Ding T, Sun X, Xu Y, Liu D (2013) Ultrasound effects on thedegradation kinetics, structure, and rheological properties of apple pectin. Ultrason Sonochem 20:222–231PubMedCrossRefPubMedCentralGoogle Scholar
  253. Zhang SY, Li W, Smith CJ, Musa H (2015a) Cereal-derived arabinoxylans as biological response modifiers: extraction, molecular features, and immune-stimulating properties. Crit Rev Food Sci Nutr 55:1035–1052PubMedCrossRefPubMedCentralGoogle Scholar
  254. Zhang YJ, Li S, Gan R-Y, Zhou T, Xu D-P, Li H-B (2015b) Impacts of gut bacteria on human health and diseases. Int J Mol Sci 16:7493–7519PubMedPubMedCentralCrossRefGoogle Scholar
  255. Zia F, Zia KM, Zuber M, Ahmad HB, Muneer M (2016) Glucomannan based polyurethanes: a critical short review of recent advances and future perspectives. Int J Biol Macromol 87:229–236PubMedCrossRefPubMedCentralGoogle Scholar
  256. Zivkovic A, German JB, Lebrilla CB, Mills DA (2011) Human milk glycobiome and its impact on the infant gastrointestinal microbiota. Proc Natl Acad Sci U S A 108:4653–4658PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Measurement SciencePepsiCo R&DPlanoUSA
  2. 2.Agricultural Research StationVirginia State UniversityPetersburgUSA

Personalised recommendations