Advertisement

Current Processing Methods in the Development of Micro- and Nanoencapsulation from Edible Polymers

  • Teresita Arredondo-Ochoa
  • Carlos Regalado-González
  • Olga Martín-Belloso
Chapter

Abstract

Micro- and nanoencapsulation are processes that enclose a substance within a wall material at the micro and nano scale levels. This technology shows an important role in the food industry due to the many advantages and a variety of new properties that it can offer to the encapsulated material. Among them it can be highlighted the improvement of stability by protecting a food ingredient from an adverse environment, masking organoleptic properties, facilitation of handling equipment, enhanced bioavailability of bioactive compounds, and controlled release, which could reduce doses and potential toxicity of the encapsulated compound. Edible polymers such as polysaccharides and proteins have been proposed as wall materials in micro- and nanoencapsulation, due to the benefits that they offer over synthetic polymers. In addition, edible polymers are highly available, safe, convenient, and can increase the quality of the final product. Hence, the techniques used to successfully achieve these processes depend on the carrier wall materials used. This chapter will focus on describing the characteristics of the different processing methods used for the production of micro- and nanoencapsulated compounds, their advantages, disadvantages and applications. It will also provide insights about recent advances in this area.

Keywords

Biopolymers Lipids Polysaccharides Proteins 

References

  1. Alexander M, Acero Lopez A, Fang Y, Corredig M (2012) Incorporation of phytosterols in soy phospholipids nanoliposomes: encapsulation efficiency and stability. LWT Food Sci Technol 47(2):427–436CrossRefGoogle Scholar
  2. Alvim ID, Stein MA, Koury IP, Dantas FBH, Cruz CLCV (2016) Comparison between the spray drying and spray chilling microparticles contain ascorbic acid in a baked product application. LWT Food Sci Technol 65:689–694CrossRefGoogle Scholar
  3. Arpagaus C, John P, Collenberg A, Rütti D (2017) Nanocapsules formation by nano spray drying. In: Jafari SM (ed) Nanoencapsulation technologies for the food and nutraceutical industries. Academic, Cambridge, pp 346–401CrossRefGoogle Scholar
  4. Arslan-Tontul S, Erbas M (2017) Single and double layered microencapsulation of probiotics by spray drying and spray chilling. LWT Food Sci Technol 81:160–169CrossRefGoogle Scholar
  5. Augustin MA, Hemar Y (2009) Nano- and micro-structured assemblies for encapsulation of food ingredients. Chem Soc Rev 38:902–912PubMedCrossRefGoogle Scholar
  6. Azevedo MA, Bourbon AI, Vicente AA, Cerqueira MA (2014) Alginate/chitosan nanoparticles for encapsulation and controlled release of vitamin B2. Int J Biol Macromol 71:141–146PubMedCrossRefGoogle Scholar
  7. Bajaj PR, Bhunia K, Kleiner L, Melito HSJ, Smith D, Ganjyal G, Sablani SS (2017) Improving functional properties of pea protein isolate for microencapsulation of flaxseed oil. J Microencapsul 34(2):218–230PubMedCrossRefGoogle Scholar
  8. Bakry AM, Abbas S, Ali B, Majeed H, Abouelwafa MY, Mousa A, Liang L (2016) Microencapsulation of oils: a comprehensive review of benefits, techniques, and applications. Compr Rev Food Sci Food Saf 15:143–182CrossRefGoogle Scholar
  9. Bandhavi P (2013) Microencapsulation process materials, manufacturing methods and applications: a review. Int J Pharm Res Dev 5(03):008–020Google Scholar
  10. Belščak-Cvitanović A, Stojanović R, Manojlović V, Komes D, Cindrić IJ, Nedović V, Bugarski B (2011) Encapsulation of polyphenolic antioxidants from medicinal plant extracts in alginate–chitosan system enhanced with ascorbic acid by electrostatic extrusion. Food Res Int 44:1094–1101CrossRefGoogle Scholar
  11. Belščak-Cvitanović A, Đorđević V, Karlović S, Pavlović V, Komes D, Ježek D, Bugarski B, Nedović V (2015) Protein-reinforced and chitosan-pectin coated alginate microparticles for delivery of flavan-3-ol antioxidants and caffeine from green tea extract. Food Hydrocoll 51:361–374CrossRefGoogle Scholar
  12. Belščak-Cvitanović A, Bušić A, Barišić L, Vrsaljko D, Karlović S, Špoljarić I, Vojvodić A, Mršić G, Komes D (2016) Emulsion templated microencapsulation of dandelion (Taraxacum officinale L.) polyphenols and β-carotene by ionotropic gelation of alginate and pectin. Food Hydrocoll 57:139–152CrossRefGoogle Scholar
  13. Berg S, Bretz M, Hubbermann EM, Schwarz K (2012) Influence of different pectins on powder characteristics of microencapsulated anthocyanins and their impact on drug retention of shellac coated granulate. J Food Eng 108:158–165CrossRefGoogle Scholar
  14. Celli GB, Ghanem A, Brooks MSL (2015) Bioactive encapsulated powders for functional foods—a review of methods and current limitations. Food Bioprocess Technol 8(9):1825–1837CrossRefGoogle Scholar
  15. Chang D, Abbas S, Hayat K, Xia S, Zhang X, Xie M, Kim J (2010) Encapsulation of ascorbic acid in amorphous maltodextrin employing extrusion as affected by matrix core ratio and water content. Int J Food Sci Technol 45:1895–1901CrossRefGoogle Scholar
  16. Chen J, Wang Q, Liu CM, Gong J (2017) Issues deserve attention in encapsulating probiotics: critical review of existing literature. Crit Rev Food Sci Nutr 57(6):1228–1238PubMedCrossRefPubMedCentralGoogle Scholar
  17. Chun H, Kim CH, Cho YH (2014) Microencapsulation of Lactobacillus plantarum DKL 109 using external ionic gelation method. Korean J Food Sci Anim Resour 34(5):692–699PubMedPubMedCentralCrossRefGoogle Scholar
  18. Consoli L, Grimaldi R, Sartori T, Menegalli FC, Hubinger MD (2016) Gallic acid microparticles produced by spray chilling technique: production and characterization. LWT Food Sci Technol 65:79–87CrossRefGoogle Scholar
  19. Cook MT, Tzortzis G, Charalampopoulos D, Khutoryanskiy VV (2012) Microencapsulation of probiotics for gastrointestinal delivery. J Control Release 162(1):56–67PubMedCrossRefGoogle Scholar
  20. Coronel-Aguilera C, Martín-González M (2015) Encapsulation of spray dried β-carotene emulsion by fluidized bed coating technology. LWT Food Sci Technol 62:187–193CrossRefGoogle Scholar
  21. Da Silva PT, Fries LLM, De Menezes CR, Holkem AT, Schwan CL, Wigmann EF, Bastos JO, Da Silva CB (2014) Microencapsulation: concepts, mechanisms, methods and some applications in food technology. Cienc Rural 44(7):1304–1311CrossRefGoogle Scholar
  22. Dahili LA, Feczkó T (2015) Cross-linking of horseradish peroxidase enzyme to fine particles generated by Nano Spray Dryer B-90. Period Polytech Chem Eng 59:209–214CrossRefGoogle Scholar
  23. De Castro-Cislaghi FP, Silva CRE, Fritzen-Freire CB, Lorenz JG, Sant’Anna ES (2012) Bifidobacterium Bb-12 microencapsulated by spray drying with whey: survival under simulated gastrointestinal conditions, tolerance to NaCl, and viability during storage. J Food Eng 113(2):186–193CrossRefGoogle Scholar
  24. De Paz E, Martín A, Estrella A, Rodríguez-Rojo S, Matias AA, Duarte CMM, Cocero MJ (2012) Formulation of β-carotene by precipitation from pressurized ethyl acetate-on water emulsions for application as natural colorant. Food Hydrocoll 26:17–27CrossRefGoogle Scholar
  25. De Vos P, Lazarjani HA, Poncelet D, Faas MM (2014) Polymers in cell encapsulation from an enveloped cell perspective. Adv Drug Deliv Rev 67–68:15–34PubMedCrossRefPubMedCentralGoogle Scholar
  26. Di Battista CA, Constenla D, Ramírez-Rigo MV, Piña J (2015) The use of arabic gum, maltodextrin and surfactants in the microencapsulation of phytosterols by spray drying. Powder Technol 286:193–201CrossRefGoogle Scholar
  27. Dias DR, Botrel DA, Fernandes RVB, Borges SV (2017) Encapsulation as a tool for bioprocessing of functional foods. Curr Opin Food Sci 13:31–37CrossRefGoogle Scholar
  28. Dong QY, Chen MY, Xin Y, Qin XY, Cheng Z, Shi L, Tang ZX (2013) Alginate-based and protein-based materials for probiotics encapsulation: a review. Int J Food Sci Technol 48(7):1339–1351CrossRefGoogle Scholar
  29. Dordevic V, Balanc B, Cvitanovic AB, Levic S, Trifkovic K, Kalusevic A, Kostic I, Komes D, Bugarski B, Nedovic V (2015) Trends in encapsulation technologies for delivery of food bioactive compounds. Food Eng Rev 7(4):452–490CrossRefGoogle Scholar
  30. Eckert C, Garcia-Serpa V, Dos Santos ACF, Da Costa SM, Dalpubel V, Lehn DN, Volken de Souza CF (2017) Microencapsulation of Lactobacillus plantarum ATCC 8014 through spray drying and using dairy whey as wall materials. LWT Food Sci Technol 82:176–183CrossRefGoogle Scholar
  31. Engelmann C, Kragl U (2018) Spray congealing as innovative technique for enzyme encapsulation. J Chem Technol Biotechnol 93:191–197CrossRefGoogle Scholar
  32. Ezhilarasi PN, Karthik P, Chhanwal N, Anandharamakrishnan C (2013) Nanoencapsulation techniques for food bioactive components: a review. Food Bioprocess Technol 6(3):628–647CrossRefGoogle Scholar
  33. Fang Z, Bhandari B (2010) Encapsulation of polyphenols—a review. Trends Food Sci Technol 21(10):510–523CrossRefGoogle Scholar
  34. Fang Z, Bhandari B (2012) Encapsulation techniques for food ingredient systems. In: Bhandari B, Roos YH (eds) Food materials science and engineering. Blackwell Publishing Ltd, Oxford, pp 320–348CrossRefGoogle Scholar
  35. Fathi M, Mozafari MR, Mohebbi M (2012) Nanoencapsulation of food ingredients using lipid based delivery systems. Trends Food Sci Technol 23(1):13–27CrossRefGoogle Scholar
  36. Fathi M, Martín A, McClements DJ (2014) Nanoencapsulation of food ingredients using carbohydrate based delivery systems. Trends Food Sci Technol 39(1):18–39CrossRefGoogle Scholar
  37. Ferrari CC, Germer SPM, Alvim ID, Vissotto FZ, De Aguirre JM (2012) Influence of carrier agents on the physicochemical properties of blackberry powder produced by spray drying. Int J Food Sci Technol 47(6):1237–1245CrossRefGoogle Scholar
  38. Gadkari P, Balaraman M (2015) Catechins: sources, extraction and encapsulation: a review. Food Bioprod Process 93:122–138CrossRefGoogle Scholar
  39. Gamboa OD, Gonçalves LG, Grosso CF (2011) Microencapsulation of tocopherols in lipid matrix by spray chilling method. Proc Food Sci 1:1732–1739CrossRefGoogle Scholar
  40. Gbassi GK, Vandamme T (2012) Probiotic encapsulation technology: from microencapsulation to release into the gut. Pharmaceutics 4(1):149–163PubMedPubMedCentralCrossRefGoogle Scholar
  41. Gómez-Estaca J, Gavara R, Hernández-Muñoz P (2015) Encapsulation of curcumin in electrosprayed gelatin microspheres enhances its bioaccessibility and widens its uses in food applications. Innov Food Sci Emerg Technol 29:302–307CrossRefGoogle Scholar
  42. Gutiérrez TJ (2018) Processing nano- and microcapsules for industrial applications. In: Hussain CM (ed) Handbook of nanomaterials for industrial applications. Editorial Elsevier, pp 989–1011. https://doi.org/10.1016/B978-0-12-813351-4.00057-2. EE.UU. ISBN: 978-0-12-813351-4
  43. Gutiérrez TJ, Álvarez K (2017) Biopolymers as microencapsulation materials in the food industry. In: Masuelli M, Renard D (eds) Advances in physicochemical properties of biopolymers: part 2. Bentham Science Publishers, pp 296–322.  https://doi.org/10.2174/9781681085449117010009. EE.UU. ISBN: 978-1-68108-545-6. eISBN: 978-1-68108-544-9
  44. Haham M, Ish-Shalom S, Nodelman M, Duek I, Segal E, Kustanovich M, Livney YD (2012) Stability and bioavailability of vitamin D nanoencapsulated in casein micelles. Food Funct 3(7):737–744PubMedCrossRefGoogle Scholar
  45. Iqbal M, Zafar N, Fessi H, Elaissari A (2015) Double emulsion solvent evaporation techniques used for drug encapsulation. Int J Pharm 496(2):173–190PubMedCrossRefGoogle Scholar
  46. Kavitake D, Kandasamy S, Devi P, Shetty PH (2018) Recent developments on encapsulation of lactic acid bacteria as potential starter culture in fermented foods-a review. Food Biosci 21:34–44CrossRefGoogle Scholar
  47. Kim ES, Lee JS, Lee HG (2016) Calcium-alginate microparticles for sustained release of catechin prepared via an emulsion gelation technique. Food Sci Biotechnol 25(5):1337–1343CrossRefGoogle Scholar
  48. Krogsgård Nielsen C, Kjems J, Mygind T, Snabe T, Schwarz K, Serfert Y, Meyer RL (2016) Enhancing the antibacterial efficacy of isoeugenol by emulsion encapsulation. Int J Food Microbiol 229:7–14PubMedCrossRefGoogle Scholar
  49. Kumar KPS, Sk T, Banu S, Lakshmi PN, Bhowmik D (2013) Microencapsulation technology. Indian J Res Pharm Biotechnol 1(3):324–328Google Scholar
  50. Kurozawa L, Hubinger M (2017) Hydrophilic food compounds encapsulation by ionic gelation. Curr Opin Food Sci 15:50–55CrossRefGoogle Scholar
  51. Kwak HS (2014) Overview of nano- and microencapsulation for foods. In: Kwak HS (ed) Nano- and microencapsulation for foods. Wiley Blackwell, Chichester, pp 1–14CrossRefGoogle Scholar
  52. Lam RSH, Nickerson MT (2013) Food proteins: a review on their emulsifying properties using a structure-function approach. Food Chem 141(2):975–984PubMedCrossRefGoogle Scholar
  53. Laohasongkrama K, Mahamaktudsanee T, Chaiwanichsiri S (2011) Microencapsulation of Macadamia oil by spray drying. Proc Food Sci 1:1660–1665CrossRefGoogle Scholar
  54. Liang L, Tremblay-Hébert V, Subirade M (2011) Characterisation of the b-lactoglobulin/a-tocopherol complex and its impact on α-tocopherol stability. Food Chem 126:821–826CrossRefGoogle Scholar
  55. Liu J, Willför S, Xun C (2015) A review of bioactive plant polysaccharides: biological activities, functionalization, and biomedical applications. Bioact Carbohydr Diet Fibre 5(1):31–61CrossRefGoogle Scholar
  56. Lu W, Kelly A, Miao S (2016) Emulsion-based encapsulation and delivery systems for polyphenols. Trends Food Sci Technol 47:1–9CrossRefGoogle Scholar
  57. Luna-Guevara JJ, Ochoa-Velasco CE, Hernández-Carranza P, Guerrero-Beltrán JA (2017) Microencapsulation of walnut, peanut and pecan oils by spray drying. Food Struct 12:26–32CrossRefGoogle Scholar
  58. Lupo B, Maestro A, Gutiérrez JM, González C (2015) Characterization of alginate beads with encapsulated cocoa extract to prepare functional food: comparison of two gelation mechanisms. Food Hydrocoll 49:24–34CrossRefGoogle Scholar
  59. McClements DJ (2012) Requirements for food ingredient and nutraceutical delivery systems. In: Garti N, McClements DJ (eds) Encapsulation technologies and delivery systems for food ingredients and nutraceuticals. Woodhead, Cambridge, pp 3–18CrossRefGoogle Scholar
  60. Mishra MK (2016) Overview of encapsulation and controlled release. In: Mishra M (ed) Handbook of encapsulation and controlled release. CRC Press, Taylor & Francis Group, Boca Raton, pp 3–22Google Scholar
  61. Moura S, Berling C, Germer S, Alvim I, Hubinger M (2018) Encapsulating anthocyanins from Hibiscus sabdariffa L. calyces by ionic gelation: pigment stability during storage of microparticles. Food Chem 241:317–327PubMedCrossRefGoogle Scholar
  62. Nagavarma BVN, Hemant KSY, Ayaz AVLS, Shivakumar HG (2012) Different techniques for preparation of polymeric nanoparticles—a review. Asian J Pharm Clin Res 5(3):16–23Google Scholar
  63. Nandiyanto ABD, Okuyama K (2011) Progress in developing spray-drying methods for the production of controlled morphology particles: from the nanometer to submicrometer size ranges. Adv Powder Technol 22(1):1–19CrossRefGoogle Scholar
  64. Nazzaro F, Orlando P, Fratianni F, Coppola R (2012) Microencapsulation in food science and biotechnology. Curr Opin Biotechnol 23(2):182–186PubMedCrossRefGoogle Scholar
  65. Nedovic V, Kalusevic A, Manojlovic V, Levic S, Bugarski B (2011) An overview of encapsulation technologies for food applications. Proc Food Sci 1:1806–1815CrossRefGoogle Scholar
  66. Nesterenko A, Alric I, Silvestre F, Durrieu V (2014) Comparative study of encapsulation of vitamins with native and modified soy protein. Food Hydrocoll 38:172–179CrossRefGoogle Scholar
  67. Okuro PK, Junior FEM, Silvia Favaro-Trindade CS (2013) Technological challenges for spray chilling encapsulation of functional food ingredients. Food Technol Biotechnol 51(2):171–182Google Scholar
  68. Olaiya C, Soetan K, Esan A (2016) The role of nutraceuticals, functional foods and value added food products in the prevention and treatment of chronic diseases. Afr J Food Sci 10(10):185–193CrossRefGoogle Scholar
  69. Oliveira A, Guimarães K, Cerize N, Tunussi A, Poço J (2013) Nano spray drying as an innovative technology for encapsulating hydrophilic active pharmaceutical ingredients (API). Nanomed Nanotechnol 4(6):1–6Google Scholar
  70. Onwulata C (2012) Encapsulation of new active ingredients. Annu Rev Food Sci Technol 3:183–202PubMedCrossRefGoogle Scholar
  71. Oxley J (2016) Process-selection criteria. In: Mishra M (ed) Handbook of encapsulation and controlled release. CRC Press, Taylor & Francis Group, Boca Raton, pp 23–34Google Scholar
  72. Patel AR, Heussen PCM, Hazekamp J, Drost E, Velikov KP (2012) Quercetin loaded biopolymeric colloidal particles prepared by simultaneous precipitation of quercetin with hydrophobic protein in aqueous medium. Food Chem 133(2):423–429PubMedCrossRefGoogle Scholar
  73. Pedroso DL, Thomazini M, Heinemann RJB, Favaro-Trindade CS (2012) Protection of Bifidobacterium lactis and Lactobacillus acidophilus by microencapsulation using spray chilling. Int Dairy J 26(2):127–132CrossRefGoogle Scholar
  74. Peng Y, Meng Q, Zhou J, Chen B, Xi J, Long P, Zhang L, Hou R (2018) Nanoemulsion delivery system of tea polyphenols enhanced the bioavailability of catechins in rats. Food Chem 242:527–532PubMedCrossRefGoogle Scholar
  75. Pérez-Masiá R, López-Nicolás R, Periago MJ, Ros G, Lagaron JM, López-Rubio A (2015) Encapsulation of folic acid in food hydrocolloids through nanospray drying and electrospraying for nutraceutical applications. Food Chem 168:124–133PubMedCrossRefGoogle Scholar
  76. Pool H, Mendoza S, Xiao H, McClements DJ (2013) Encapsulation and release of hydrophobic bioactive components in nanoemulsion based delivery systems: impact of physical form on quercetin bioaccessibility. Food Funct 4:162–174PubMedCrossRefGoogle Scholar
  77. Qiu C, Wang B, Wang Y, Teng Y (2017) Effects of colloidal complexes formation between resveratrol and deamidated gliadin on the bioaccessibility and lipid oxidative stability. Food Hydrocoll 69:466–472CrossRefGoogle Scholar
  78. Quirós-Sauceda AE, Ayala-Zavala JF, Olivas GI, González-Aguilar GA (2014) Edible coatings as encapsulating matrices for bioactive compounds: a review. J Food Sci Technol 51(9):1674–1685PubMedPubMedCentralCrossRefGoogle Scholar
  79. Rajabi H, Ghorbani M, Jafari SM, Sadeghi A, Rajabzadeh Q (2015) Retention of saffron bioactive components by spray drying encapsulation using maltodextrin, gum Arabic and gelatin as wall materials. Food Hydrocoll 51:327–337CrossRefGoogle Scholar
  80. Ray S, Raychaudhuri U, Chakraborty R (2016) An overview of encapsulation of active compounds used in food products by drying technology. Food Biosci 13:76–83CrossRefGoogle Scholar
  81. Repka MA, Shah S, Lu J, Maddineni S, Morott J, Patwardhan K, Mohammed NN (2012) Melt extrusion: process to product. Expert Opin Drug Deliv 9(1):105–125PubMedCrossRefGoogle Scholar
  82. Riaz QUA, Masud T (2013) Recent trends and applications of encapsulating materials for probiotic stability. Crit Rev Food Sci Nutr 53(3):231–244PubMedCrossRefGoogle Scholar
  83. Rosas-Flores W, Ramos-Ramirez EG, Salazar-Montoya JA (2013) Microencapsulation of Lactobacillus helveticus and Lactobacillus delbrueckii using alginate and gellan gum. Carbohydr Polym 98:1011–1017PubMedCrossRefGoogle Scholar
  84. Schell D, Beermann C (2014) Fluidized bed microencapsulation of Lactobacillus reuteri with sweet whey and shellac for improved acid resistance and in-vitro gastro-intestinal survival. Food Res Int 62:308–314CrossRefGoogle Scholar
  85. Serrano-Cruz MR, Villanueva-Carvajal A, Morales-Rosales EJ, Ramírez-Dávila JF, Dominguez-Lopez A (2013) Controlled release and antioxidant activity of Roselle (Hibiscus sabdariffa L.) extract encapsulated in mixtures of carboxymethyl cellulose, whey protein, and pectin. LWT Food Sci Technol 50(2):554–561CrossRefGoogle Scholar
  86. Sessa M, Balestrieri ML, Ferrari G, Servillo L, Castaldo D, D’Onofrio N, Donsi F, Tsao R (2014) Bioavailability of encapsulated resveratrol into nanoemulsion-based delivery systems. Food Chem 147:42–50PubMedCrossRefGoogle Scholar
  87. Shit SC, Shah PM (2014) Edible polymers: challenges and opportunities. J Polym Hindawi 2014:1–13CrossRefGoogle Scholar
  88. Silva MP, Tulini FL, Martins E, Penning M, Fávaro-Trindade CS, Poncelet D (2018) Comparison of extrusion and co-extrusion encapsulation techniques to protect Lactobacillus acidophilus LA3 in simulated gastrointestinal fluids. LWT Food Sci Technol 89:392–399CrossRefGoogle Scholar
  89. Srivastava Y, Semwal AD, Sharma GK (2013) Application of various chemical and mechanical microencapsulation techniques in food sector—a review. Int J Food Ferment Technol 3(1):1–13CrossRefGoogle Scholar
  90. Stunda-Zujeva A, Irbe Z, Berzina-Cimdina L (2017) Controlling the morphology of ceramic and composite powders obtained via spray drying—a review. Ceram Int 43(15):11543–11551CrossRefGoogle Scholar
  91. Suganya V, Anuradha V (2017) Microencapsulation and nanoencapsulation: a review. Int J Pharm Clin Res 9(3):233–239CrossRefGoogle Scholar
  92. Sun-Waterhouse D, Penin-Peyta L, Wadhwa SS, Waterhouse GIN (2012) Storage stability of phenolic-fortified avocado oil encapsulated using different polymer formulations and co-extrusion technology. Food Bioprocess Technol 5(8):3090–3102CrossRefGoogle Scholar
  93. Tolve R, Galgano F, Caruso MC, Tchuenbou-Magaia FL, Condelli N, Favati F, Zhang Z (2016) Encapsulation of health-promoting ingredients: applications in foodstuffs. Int J Food Sci Nutr 67(8):888–918PubMedCrossRefPubMedCentralGoogle Scholar
  94. Toniazzo T, Berbel IF, Cho S, Fávaro-Trindade CS, Moraes ICF, Pinho SC (2014) β-carotene-loaded liposome dispersions stabilized with xanthan and guar gums: physico-chemical stability and feasibility of application in yogurt. LWT Food Sci Technol 59(2):1265–1273CrossRefGoogle Scholar
  95. Torres O, Murray B, Sarkar A (2016) Emulsion microgel particles: novel encapsulation strategy for lipophilic molecules. Trends Food Sci Technol 55:98–108CrossRefGoogle Scholar
  96. Varankovich NV, Khan NH, Nickerson MT, Kalmokoff M, Korber DR (2015) Evaluation of pea protein-polysaccharide matrices for encapsulation of acid-sensitive bacteria. Food Res Int 70:118–124CrossRefGoogle Scholar
  97. Vincekovic M, Viskic M, Juric S, Giacometti J, Kovacevic DB, Putnik P, Donsi F, Barba FJ, Jambrak AR (2017) Innovative technologies for encapsulation of Mediterranean plants extracts. Trends Food Sci Technol 69(Part A):1–12CrossRefGoogle Scholar
  98. Wang Z, Ju X, He R, Yuan J, Wang L (2015) The effect of rapeseed protein structural modification on microstructural properties of peptide microcapsules. Food Bioprocess Technol 8(6):1305–1318CrossRefGoogle Scholar
  99. Wichchukit S, Oztop MH, McCarthy MJ, McCarthy KL (2013) Whey protein/alginate beads as carriers of a bioactive component. Food Hydrocoll 33:66–73CrossRefGoogle Scholar
  100. Xu W, Jin W, Zhang C, Li Z, Lin L, Huang Q, Ye S, Li B (2014) Curcumin loaded and protective system based on complex of κ-carrageenan and lysozyme. Food Res Int 59:61–66CrossRefGoogle Scholar
  101. Yang S, Mao XY, Li FF, Zhang D, Leng XJ, Ren FZ, Teng GX (2012) The improving effect of spray-drying encapsulation process on the bitter taste and stability of whey protein hydrolysate. Eur Food Res Technol 235:91–97CrossRefGoogle Scholar
  102. Ydjedd S, Bouriche S, López-Nicolás R, Sánchez-Moya T, Frontela-Saseta C, Ros-Berruezo G, Rezqui F, Louaileche H, Kati DE (2017) Effect of in vitro Gastrointestinal digestion on encapsulated and nonencapsulated phenolic compounds of carob (Ceratonia siliqua L.) pulp extracts and their antioxidant capacity. J Agric Food Chem 65(4):827–835PubMedCrossRefPubMedCentralGoogle Scholar
  103. Ye C, Chi H (2018) A review of recent progress in drug and protein encapsulation: approaches, applications and challenges. Mater Sci Eng C Mater Biol Appl 83:233–246PubMedCrossRefPubMedCentralGoogle Scholar
  104. Yonekura L, Sun H, Soukoulis C, Fisk I (2014) Microencapsulation of Lactobacillus acidophilus NCIMB 701748 in matrices containing soluble fibre by spray drying: technological characterization, storage stability and survival after in vitro digestion. J Funct Food 6:205–214CrossRefGoogle Scholar
  105. Zaky A, Elbakry A, Ehmer A, Breuning M, Goepferich A (2010) The mechanism of protein release from triglyceride microspheres. J Control Release 147:202–210PubMedCrossRefPubMedCentralGoogle Scholar
  106. Ziani K, Fang Y, McClements DJ (2012) Encapsulation of functional lipophilic components in surfactant-based colloidal delivery systems: vitamin E, vitamin D, and lemon oil. Food Chem 134:1106–1112PubMedCrossRefPubMedCentralGoogle Scholar
  107. Zuidam NJ, Shimoni E (2010) Overview of microencapsulates for use in food products or processes and methods to make them. In: Zuidam NJ, Nedović N (eds) Encapsulation technologies for active food. Sciences and Business, Israel, pp 3–29Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Teresita Arredondo-Ochoa
    • 1
  • Carlos Regalado-González
    • 1
  • Olga Martín-Belloso
    • 2
  1. 1.DIPA, PROPAC, Facultad de QuímicaUniversidad Autónoma de QuerétaroQuerétaroMexico
  2. 2.Department of Food TechnologyUniversity of Lleida–Agrotecnio CenterLleidaSpain

Personalised recommendations