Advertisement

Composite Foams Made from Biodegradable Polymers for Food Packaging Applications

  • Luis M. Araque
  • Vera A. Alvarez
  • Tomy J. Gutiérrez
Chapter

Abstract

Polymeric foams are cell structures (porous microstructures) that have been frequently made from synthetic polymers for use in the development of food packaging. Due to the problems concerning the environmental impact caused by polymers from the petrochemical industry, the foams have been more recently studied from biodegradable polymers. However, the polymer materials obtained are usually susceptible to moisture, thus conditioning the collapse of the porous structure of the material. As an alternative, the composite foams have been investigated from nanofillers such as clays, cellulose, nanoparticles, among others. This chapter aims to analyze the recent advances in the studies of composite foams.

Keywords

Biopolymers Composite materials Polymer composites 

Notes

Acknowledgements

The authors would like to thank the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) (Postdoctoral fellowship internal PDTS-Resolution 2417), Universidad Nacional de Mar del Plata (UNMdP) for financial support, and Dr. Mirian Carmona-Rodríguez.

Conflicts of Interest: The authors declare no conflict of interest.

References

  1. Bocz K, Tábi T, Vadas D, Sauceau M, Fages J, Marosi G (2016) Characterisation of natural fibre reinforced PLA foams prepared by supercritical CO2 assisted extrusion. Express Polym Lett 10(9):771–779.  https://doi.org/10.3144/expresspolymlett.2016.71CrossRefGoogle Scholar
  2. Borkotoky SS, Dhar P, Katiyar V (2017) Biodegradable poly (lactic acid)/Cellulose nanocrystals (CNCs) composite microcellular foam: effect of nanofillers on foam cellular morphology, thermal and wettability behavior. Int J Biol Macromol 106:433–446.  https://doi.org/10.1016/j.ijbiomac.2017.08.036CrossRefPubMedGoogle Scholar
  3. Chen RY, Zou W, Zhang HC, Zhang GZ, Yang ZT, Jin G, Qu JP (2015) Thermal behavior, dynamic mechanical properties and rheological properties of poly(butylene succinate) composites filled with nanometer calcium carbonate. Polym Test 42:160–167.  https://doi.org/10.1016/j.polymertesting.2015.01.015CrossRefGoogle Scholar
  4. Debiagi F, Kobayashi RKT, Nakazato G, Panagio LA, Mali S (2014) Biodegradable active packaging based on cassava bagasse, polyvinyl alcohol and essential oils. Ind Crop Prod 52:664–670.  https://doi.org/10.1016/j.indcrop.2013.11.032CrossRefGoogle Scholar
  5. Di ME, Iannace S, Di Y, Del GE, Nicolais L (2003) Heterogeneous bubble nucleation in PCL/clay nanocomposite foams. Plast Rubber Compos 32:313–317.  https://doi.org/10.1179/146580103225003479. Copyright (C) 2010 American Chemical Society (ACS). All Rights ReservedCrossRefGoogle Scholar
  6. Ding W, Jahani D, Chang E, Alemdar A, Park CB, Sain M (2016) Development of PLA/cellulosic fiber composite foams using injection molding: crystallization and foaming behaviors. Compos A: Appl Sci Manuf 83:130–139.  https://doi.org/10.1016/j.compositesa.2015.10.003CrossRefGoogle Scholar
  7. Hu F, Lin N, Chang PR, Huang J (2015) Reinforcement and nucleation of acetylated cellulose nanocrystals in foamed polyester composites. Carbohydr Polym 129:208–215.  https://doi.org/10.1016/j.carbpol.2015.04.061CrossRefPubMedGoogle Scholar
  8. Kaewtatip K, Tanrattanakul V, Phetrat W (2013) Preparation and characterization of kaolin/starch foam. Appl Clay Sci 80–81:413–416.  https://doi.org/10.1016/j.clay.2013.07.011CrossRefGoogle Scholar
  9. Kaisangsri N, Kerdchoechuen O, Laohakunjit N (2014) Characterization of cassava starch based foam blended with plant proteins, kraft fiber, and palm oil. Carbohydr Polym 110:70–77.  https://doi.org/10.1016/j.carbpol.2014.03.067CrossRefPubMedGoogle Scholar
  10. Keshtkar M, Nofar M, Park CB, Carreau PJ (2014) Extruded PLA/clay nanocomposite foams blown with supercritical CO2. Polymer (United Kingdom) 55(16):4077–4090.  https://doi.org/10.1016/j.polymer.2014.06.059CrossRefGoogle Scholar
  11. Kumar S, Maiti P (2015) Understanding the controlled biodegradation of polymers using nanoclays. Polymer (United Kingdom) 76:25–33.  https://doi.org/10.1016/j.polymer.2015.08.044CrossRefGoogle Scholar
  12. Lee SY, Chen H, Hanna MA (2008) Preparation and characterization of tapioca starch-poly(lactic acid) nanocomposite foams by melt intercalation based on clay type. Ind Crop Prod 28(1):95–106.  https://doi.org/10.1016/j.indcrop.2008.01.009CrossRefGoogle Scholar
  13. Li Y, Tian H, Jia Q, Niu P, Xiang A, Liu D, Qin Y (2015) Development of polyvinyl alcohol/intercalated MMT composite foams fabricated by melt extrusion. J Appl Polym Sci 132(43):1–7.  https://doi.org/10.1002/app.42706CrossRefGoogle Scholar
  14. Li R, Du J, Zheng Y, Wen Y, Zhang X, Yang W et al (2017) Ultra-lightweight cellulose foam material: preparation and properties. Cellulose 24(3):1417–1426.  https://doi.org/10.1007/s10570-017-1196-yCrossRefGoogle Scholar
  15. Lim S-K, Lee J-J, Jang S-G, Lee S-I, Lee K-H, Choi HJ, Chin I-J (2011) Synthetic aliphatic biodegradable poly(butylene succinate)/clay nanocomposite foams with high blowing ratio and their physical characteristics. Polym Eng Sci 51(7):1316–1324.  https://doi.org/10.1002/pen.21927CrossRefGoogle Scholar
  16. Lin N, Chen Y, Hu F, Huang J (2015) Mechanical reinforcement of cellulose nanocrystals on biodegradable microcellular foams with melt-compounding process. Cellulose 22(4):2629–2639.  https://doi.org/10.1007/s10570-015-0684-1CrossRefGoogle Scholar
  17. Liu W, Wang X, Li H, Du Z, Zhang C (2013) Study on rheological and extrusion foaming behaviors of chain-extended poly (lactic acid)/clay nanocomposites. J Cell Plast 49(6):535–554.  https://doi.org/10.1177/0021955X13503845CrossRefGoogle Scholar
  18. Liu D, Ma Z, Wang Z, Tian H, Gu M (2014) Biodegradable poly (vinyl alcohol) foams supported by cellulose nanofibrils: processing, structure, and properties. Langmuir 30:9544–9550.  https://doi.org/10.1021/la502723dCrossRefPubMedGoogle Scholar
  19. Luzi F, Fortunati E, Jiménez A, Puglia D, Pezzolla D, Gigliotti G et al (2016) Production and characterization of PLA_PBS biodegradable blends reinforced with cellulose nanocrystals extracted from hemp fibres. Ind Crop Prod 93:276–289.  https://doi.org/10.1016/j.indcrop.2016.01.045CrossRefGoogle Scholar
  20. Mali S, Debiagi F, Grossmann MVE, Yamashita F (2010) Starch, sugarcane bagasse fibre, and polyvinyl alcohol effects on extruded foam properties: a mixture design approach. Ind Crop Prod 32(3):353–359.  https://doi.org/10.1016/j.indcrop.2010.05.014CrossRefGoogle Scholar
  21. Matsuda DKM, Verceheze AES, Carvalho GM, Yamashita F, Mali S (2013) Baked foams of cassava starch and organically modified nanoclays. Ind Crop Prod 44:705–711. https://doi.org/10.1016/j.indcrop.2012.08.032CrossRefGoogle Scholar
  22. Mi HY, Jing X, Peng J, Salick MR, Peng XF, Turng LS (2014) Poly(ε-caprolactone) (PCL)/cellulose nano-crystal (CNC) nanocomposites and foams. Cellulose 21(4):2727–2741.  https://doi.org/10.1007/s10570-014-0327-yCrossRefGoogle Scholar
  23. Mitrus M, Combrzyński M, Kupryaniuk K, Wójtowicz A, Oniszczuk T, Kręcisz M et al (2016) A study of the solubility of biodegradable foams of thermoplastic starch. J Ecol Eng 17(4):184–189.  https://doi.org/10.12911/22998993/64554CrossRefGoogle Scholar
  24. Palma-Rodríguez HM, Berrios JDJ, Glenn G, Salgado-Delgado R, Aparicio-Saguilán A, Rodríguez-Hernández AI, Vargas-Torres A (2016) Effect of the storage conditions on mechanical properties and microstructure of biodegradable baked starch foams. CYTA J Food 14(3):415–422.  https://doi.org/10.1080/19476337.2015.1117142CrossRefGoogle Scholar
  25. Pornsuksomboon K, Holló BB, Szécsényi KM, Kaewtatip K (2016) Properties of baked foams from citric acid modified cassava starch and native cassava starch blends. Carbohydr Polym 136:107–112.  https://doi.org/10.1016/j.carbpol.2015.09.019CrossRefPubMedGoogle Scholar
  26. Song T, Tanpichai S, Oksman K (2016) Cross-linked polyvinyl alcohol (PVA) foams reinforced with cellulose nanocrystals (CNCs). Cellulose 23(3):1925–1938.  https://doi.org/10.1007/s10570-016-0925-yCrossRefGoogle Scholar
  27. Soykeabkaew N, Thanomsilp C, Suwantong O (2015) A review: starch-based composite foams. Compos A: Appl Sci Manuf 78:246–263.  https://doi.org/10.1016/j.compositesa.2015.08.014CrossRefGoogle Scholar
  28. Srithep Y, Turng LS, Sabo R, Clemons C (2012) Nanofibrillated cellulose (NFC) reinforced polyvinyl alcohol (PVOH) nanocomposites: properties, solubility of carbon dioxide, and foaming. Cellulose 19(4):1209–1223.  https://doi.org/10.1007/s10570-012-9726-0CrossRefGoogle Scholar
  29. Suárez G, Gutiérrez T (2017) Recent advances in the development of biodegadable films and foams from cassava starch. In: Klein C (ed) Handbook on Cassava: production, potential uses and recent advances. Nova Science Publishers, Inc., New York, pp 297–312Google Scholar
  30. Svagan AJ, Samir MASA, Berglund LA (2008) Biomimetic foams of high mechanical performance based on nanostructured cell walls reinforced by native cellulose nanofibrils. Adv Mater 20(7):1263–1269.  https://doi.org/10.1002/adma.200701215CrossRefGoogle Scholar
  31. Tsimpliaraki A, Tsivintzelis I, Marras SI, Zuburtikudis I, Panayiotou C (2013) Foaming of PCL/clay nanocomposites with supercritical CO2 mixtures: the effect of nanocomposite fabrication route on the clay dispersion and the final porous structure. J Supercrit Fluids 81:86–91.  https://doi.org/10.1016/j.supflu.2013.05.003CrossRefGoogle Scholar
  32. Yildirim N, Shaler SM, Gardner DJ, Rice R, Bousfield DW (2014) Cellulose nanofibril (CNF) reinforced starch insulating foams. Cellulose 21(6):4337–4347.  https://doi.org/10.1007/s10570-014-0450-9CrossRefGoogle Scholar
  33. Zhao N, Mark LH, Zhu C, Park CB, Li Q, Glenn R, Thompson TR (2014) Foaming poly(vinyl alcohol)/microfibrillated cellulose composites with CO2 and water as co-blowing agents. Ind Eng Chem Res 53(30):11962–11972.  https://doi.org/10.1021/ie502018vCrossRefGoogle Scholar
  34. Zhao H, Zhao G, Turng LS, Peng X (2015) Enhancing nanofiller dispersion through prefoaming and its effect on the microstructure of microcellular injection molded polylactic acid/clay nanocomposites. Ind Eng Chem Res 54(28):7122–7130.  https://doi.org/10.1021/acs.iecr.5b01130CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Luis M. Araque
    • 1
  • Vera A. Alvarez
    • 2
  • Tomy J. Gutiérrez
    • 2
  1. 1.Graduate Program in Materials Science and EngineeringFederal University of PiauíTeresinaBrazil
  2. 2.Thermoplastic Composite Materials (CoMP) Group, Institute of Research in Materials Science and Technology (INTEMA), Faculty of EngineeringNational University of Mar del Plata (UNMdP) and National Scientific and Technical Research Council (CONICET)Mar del PlataArgentina

Personalised recommendations