Advertisement

Transonic Flow Solutions with Explicit Cooling and Viscosity

  • Santanu Mondal
Conference paper
Part of the Astrophysics and Space Science Proceedings book series (ASSSP, volume 53)

Abstract

In this chapter, we discuss about the transonic flows around black hole binaries in presence of explicit cooling and viscosity and their observational aspects. Accreting compact objects are powerful X-ray emitters. The X-ray flux arises from two key accretion flow components: the geometrically thin standard accretion disk and an inner X-ray corona. The flow that feeds these objects is transonic in nature and the structure of the flow appears to depend on the heating and cooling mechanisms, where the whole system can flatten to a disk or puff up into a sphere, radiate efficiently or advect all of its energy. Sometimes the inner region varies quasi-periodically without changing much its total accretion rates. Thus the phenomenology of X-ray observations of accreting compact object is very rich and intensely studied. To go beyond the standard model of a stable accretion flow, with no corona and only a parametric viscosity of unknown origin, it is necessary to rely on a promising physical solution. In a Two Component Advective Flow solution, a high-viscosity Keplerian disk is flanked by a low angular momentum and low-viscosity flow that forms a centrifugal pressure-supported shock. The post-shock region which behaves as a Compton cloud, upscatters soft photons from the Keplerian disk. The shock wave forms under the satisfaction of Rankine-Hugoniot conditions. This shock may be steady or oscillating depending on whether flow has cooling or not. To get the full transonic solution we coupled hydrodynamics and radiative transfer in presence of cooling, heating and viscosity mechanisms.

Notes

Acknowledgements

I am thankful to my Ph.D. advisor Prof. Sandip K. Chakrabarti for his continuous support, encouragement and discussions during my work. I also acknowledge all my collaborators for their useful discussions and suggestions. I acknowledge FONDECYT postdoctoral grand (#3160350) for the article.

References

  1. 1.
    Blandford, R.D., Znajek, R.L.: MNRAS 179, 433 (1977)ADSCrossRefGoogle Scholar
  2. 2.
    Bondi, H.: MNRAS 112, 195 (1952)ADSCrossRefGoogle Scholar
  3. 3.
    Chakrabarti, S.K.: ApJ 288, 1 (1985)ADSCrossRefGoogle Scholar
  4. 4.
    Chakrabarti, S.K.: In: Audouze, J., Tran Thanh Van, J. (eds.) Accretion Processes in Astrophysics. Editions Frontiers, Paris (1986)Google Scholar
  5. 5.
    Chakrabarti, S.K.: ApJ 347, 365 (1989)ADSCrossRefGoogle Scholar
  6. 6.
    Chakrabarti, S.K.: PASJ 41, 1145(1989)ADSGoogle Scholar
  7. 7.
    Chakrabarti, S.K.: MNRAS 243, 61 (1990)ADSGoogle Scholar
  8. 8.
    Chakrabarti, S.K.: Theory of Transonic Astrophysical Flows. World Scientific, Singapore (1990)CrossRefGoogle Scholar
  9. 9.
    Chakrabarti, S.K.: ApJ 464, 664 (1996)ADSCrossRefGoogle Scholar
  10. 10.
    Chakrabarti, S.K.: IJP 72, 183 (1998)Google Scholar
  11. 11.
    Chakrabarti, S.K.: A&A 351, 185 (1999)ADSGoogle Scholar
  12. 12.
    Chakrabarti, S.K., Bhaskaran, P.: MNRAS 255, 255 (1992)ADSCrossRefGoogle Scholar
  13. 13.
    Chakrabarti, S.K., Das, S: MNRAS 349, 649 (2004)ADSCrossRefGoogle Scholar
  14. 14.
    Chakrabarti, S.K., Molteni, D.: ApJ 417, 671 (1993)ADSCrossRefGoogle Scholar
  15. 15.
    Chakrabarti, S.K., Molteni, D.: MNRAS 272, 80 (1995)ADSCrossRefGoogle Scholar
  16. 16.
    Chakrabarti, S.K., Titarchuk, L.G.: ApJ 455, 623 (1995)ADSCrossRefGoogle Scholar
  17. 17.
    Chakrabarti, S.K., Debnath, D., Nandi, A., et al.: A&A 489, L41 (2008)ADSCrossRefGoogle Scholar
  18. 18.
    Chakrabarti, S.K., Mondal, S., Debnath, D.: MNRAS 452, 3451 (2015)ADSCrossRefGoogle Scholar
  19. 19.
    Chatterjee, D., Debnath, D., Chakrabarti, S.K., et al.: ApJ 827, 88 (2016)ADSCrossRefGoogle Scholar
  20. 20.
    Das, S., Chakrabarti, S.K.: IJMPD 14, 933 (2004)Google Scholar
  21. 21.
    Das, S., Chattopadhyay, I., Nandi, A., et al.: A&A 379, 683 (2001)ADSCrossRefGoogle Scholar
  22. 22.
    Das, S., Chakrabarti, S.K., Mondal, S.: MNRAS 401, 2053 (2010)ADSCrossRefGoogle Scholar
  23. 23.
    Debnath, D., Chakrabarti, S.K., Nandi, A., et al.: BASI 36, 151 (2008)ADSGoogle Scholar
  24. 24.
    Debnath, D., Chakrabarti, S.K., Nandi, A.: AdSpR 52, 2143 (2013)ADSGoogle Scholar
  25. 25.
    Debnath, D., Chakrabarti, S.K., Mondal, S.: MNRAS 440, L121 (2014)ADSCrossRefGoogle Scholar
  26. 26.
    Debnath, D., Mondal, S., Chakrabarti, S.K.: MNRAS 447, 1984 (2015)ADSCrossRefGoogle Scholar
  27. 27.
    Fender, R.P., Gallo, E., Russell, D.: MNRAS 406, 1425 (2010)ADSGoogle Scholar
  28. 28.
    Garain, S.K., Ghosh, H., Chakrabarti, S.K.: ApJ 758, 114 (2012)ADSCrossRefGoogle Scholar
  29. 29.
    Giri, K., Chakrabarti, S.K.: MNRAS 430, 2836 (2013)ADSCrossRefGoogle Scholar
  30. 30.
    Giri, K., Garain, S.K., Chakrabarti, S.K.: MNRAS 448, 3221 (2015)ADSCrossRefGoogle Scholar
  31. 31.
    Hawley, J.W., Smarr, L.L., Wilson, J.R.: ApJ 277, 296 (1984)ADSCrossRefGoogle Scholar
  32. 32.
    Hazard, C., Mackay, M.B., Shimmins, A.J.: Nature 197, 1037 (1963)ADSCrossRefGoogle Scholar
  33. 33.
    Hoyle, F., Lyttleton, R.A.: PCPS 35, 405 (1939)ADSGoogle Scholar
  34. 34.
    Jana, A., Debnath, D., Chakrabarti, S.K., et al.: ApJ 819, 107 (2016)ADSCrossRefGoogle Scholar
  35. 35.
    Kallman, T., White, N.E.: ApJ 341, 955 (1989)ADSCrossRefGoogle Scholar
  36. 36.
    Konigl, A.: ApJ 342, 208 (1989)ADSCrossRefGoogle Scholar
  37. 37.
    Landau, L., Lifshitz, E.M.: Fluid Mechanics. Pergamon Press, New York (1959)Google Scholar
  38. 38.
    Laor, A.: ApJ 376, 90 (1991)ADSCrossRefGoogle Scholar
  39. 39.
    Liang, E.P.T. Thompson, K.A.: ApJ 240, 271 (1980)ADSCrossRefGoogle Scholar
  40. 40.
    Lightman, A.P., White, T.R.: ApJ 335, 57 (1988)ADSCrossRefGoogle Scholar
  41. 41.
    Lu, Ju-Fu., Yuan, F.: MNRAS 295, 66 (1998)ADSCrossRefGoogle Scholar
  42. 42.
    Lynden-Bell, D.: Nature 223, 690 (1969)ADSCrossRefGoogle Scholar
  43. 43.
    McClintock, J.E., Remillard, R.A.: arXiv, 036213 (astro-ph/0306213v4) (2006)Google Scholar
  44. 44.
    Molla, A.A., Debnath, D., Chakrabarti, S.K., et al.: MNRAS 460, 3163 (2016)ADSCrossRefGoogle Scholar
  45. 45.
    Molteni, D., Lanzafame, G., Chakrabarti, S.K.: ApJ 425, 161 (1994)ADSCrossRefGoogle Scholar
  46. 46.
    Molteni, D., Sponholz, H., Chakrabarti, S.K.: ApJ 457, 805 (1996)ADSCrossRefGoogle Scholar
  47. 47.
    Mondal, S., Chakrabarti, S.K.: MNRAS 431, 2716 (2013)ADSCrossRefGoogle Scholar
  48. 48.
    Mondal, S., Chakrabarti, S. K.: (2018, submitted)Google Scholar
  49. 49.
    Mondal, S., Chakrabarti, S.K., Debnath, D.: Ap&SS 353, 223 (2014)ADSCrossRefGoogle Scholar
  50. 50.
    Mondal, S., Debnath, D., Chakrabarti, S.K.: ApJ 786, 4 (2014)ADSCrossRefGoogle Scholar
  51. 51.
    Mondal, S., Chakrabarti, S.K., Debnath, D.: ApJ 798, 57 (2015)ADSCrossRefGoogle Scholar
  52. 52.
    Mondal, S., Chakrabarti, S.K., Debnath, D.: Ap&SS 361, 309 (2016)ADSCrossRefGoogle Scholar
  53. 53.
    Mondal, S., Chakrabarti, S.K., Nagarkoti, S., et al.: ApJ 850, 47 (2017)ADSCrossRefGoogle Scholar
  54. 54.
    Nagarkoti, S., Chakrabarti, S.K.: MNRAS 462, 850 (2016)ADSCrossRefGoogle Scholar
  55. 55.
    Nandi, A., Chakrabarti, S.K., Vadawale, S., et al.: A&A 380, 245 (2001)ADSCrossRefGoogle Scholar
  56. 56.
    Nandi, A., Debnath, D., Mandal, S., et. al.: A&A 542, 56 (2012)Google Scholar
  57. 57.
    Novikov, I.D., Thorne, K.S.: In: DeWitt, C., DeWitt, B. (eds.) Black Holes. Gordon and Breach, New York (1973)Google Scholar
  58. 58.
    Paczyński, B., Witta, P.J.: A&A 88, 23 (1980)ADSGoogle Scholar
  59. 59.
    Penrose, R.: Nuovo Cemento 1, 252 (1969)ADSGoogle Scholar
  60. 60.
    Prendergast, K.H., Burbridge, G.R.: ApJ 151, L83 (1968)ADSCrossRefGoogle Scholar
  61. 61.
    Salpeter, E.: ApJ 140, 796 (1964)ADSCrossRefGoogle Scholar
  62. 62.
    Schwarschild, K.: SpaW 50, 189–196 (1916)Google Scholar
  63. 63.
    Shakura, N.I., Sunyaev, R.A.: A&A 24, 337 (1973)ADSGoogle Scholar
  64. 64.
    Singh, C.B., Chakrabarti, S.K.: MNRAS 410, 2414 (2011)ADSCrossRefGoogle Scholar
  65. 65.
    Smith, D.M., Heindl, W.A., Markwardt, C.B., et al.: ApJ 554, 41 (2001)ADSCrossRefGoogle Scholar
  66. 66.
    Sunyaev, R.A., Titarchuk, L.G.: ApJ 86, 121 (1980)ADSGoogle Scholar
  67. 67.
    Tomsick, J.A., Kaaret, P., Kroeger, R.A., et al.: ApJ 512, 892 (2000)ADSCrossRefGoogle Scholar
  68. 68.
    Zdziarski, A.A., Lubinski, P., Gilfanov, M., et al.: MNRAS 342, 355 (2003)ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Santanu Mondal
    • 1
    • 2
  1. 1.Instituto de Física y AstronomíaFacultad de Ciencias, Universidad de ValparaísoValparaísoChile
  2. 2.Indian Centre For Space PhysicsKolkataIndia

Personalised recommendations