Binding Energy and Isomerism: Two Important Aspects of Astrochemistry

  • Milan Sil
Conference paper
Part of the Astrophysics and Space Science Proceedings book series (ASSSP, volume 53)


Hydrogen is widespread in the universe and H2, the precursor to more complex molecules, is mainly formed on the interstellar dust grain surface and binding energy dictates the surface chemistry. We review the adsorption energy of H and H2 to find out the accurate formation efficiency of hydrogen molecules in the interstellar medium (ISM). Various types of substrate (carbonaceous, olivine, and water ice) were used to mimic interstellar dust grain. Interestingly we found that our calculated binding energy of H is always lower than that of H2 for all types of adsorbent considered, whereas, some experiments found just the opposite trend. Though the ISM is far away from thermodynamic equilibrium, in some cases, isomerism of any specific group of molecules can be used as a way to determine the potential future observable candidates in interstellar space. Understanding the origin of life is a traditional mystery and it is curious to know how life emerged in the universe. We considered a set of molecules from various isomeric groups containing some probable precursors of the pre-biotic species to review their presence within ISM. For the selection of potentially observable molecules in between an isomeric group, we used some key tools such as enthalpies of formation, optimized energies, expected intensity ratio, and chemical abundances. According to our calculations, we proposed trans-ethylamine and (1Z)-1-propanimine as the most probable candidates from two different isomeric groups for future astronomical detection.



I thankfully want to acknowledge Department of Science and Technology, the Government of India for supporting me financially for continuing my work through DST-INSPIRE Fellowship [IF160109] scheme. I also want to thanks Dr. Ankan Das, Mr. Prasanta Gorai, and Prof. Sandip K. Chakrabarti for help and support to complete these works.


  1. 1.
    Allen, M., Robinson, G.W.: ApJ 212, 396 (1977)ADSCrossRefGoogle Scholar
  2. 2.
    Altwegg, K., Balsiger, H., Bar-Nun, A., et al.: SciA 2, e1600285 (2016)Google Scholar
  3. 3.
    Avgul, N.N., Isirikyan, A.A., Kiselev, A.V., Lygina, I.A., Poshkus, D.P.: Russ. Chem. Bull. 6, 1334 (1957)CrossRefGoogle Scholar
  4. 4.
    Avgul, N.N., Kiselev, A.V., Lygina, I.A., Poshkus, D.P.: Russ. Chem. Bull. 8, 1155 (1959)CrossRefGoogle Scholar
  5. 5.
    Belloche, A., Garrod, R.T., Müller, H.S.P., Menten, K.M., Comito, C., Schilke, P.: A&A 499, 215 (2009)ADSCrossRefGoogle Scholar
  6. 6.
    Belloche, A., Garrod, R.T., Müller, H.S.P., Menten, K.M.: Sci. 345(6204), 1584 (2014)ADSCrossRefGoogle Scholar
  7. 7.
    Botta, O., Bada, J.L.: Surv. Geophys. 23, 411 (2002)ADSCrossRefGoogle Scholar
  8. 8.
    Chakrabarti, S., Chakrabarti, S.K.: A&A 354, L6 (2000)ADSGoogle Scholar
  9. 9.
    Chakrabarti, S.K., Chakrabarti, S.: InJPh 74B, 97 (2000)ADSGoogle Scholar
  10. 10.
    Chakrabarti, S.K., Majumdar, L., Das, A., Chakrabarti, S.: Ap&SS 357, 90 (2015)ADSCrossRefGoogle Scholar
  11. 11.
    Cronin, J.R., Pizzarello, S.: Adv. Space Res. 3, 5 (1983)CrossRefGoogle Scholar
  12. 12.
    Das, A., Chakrabarti, S.K.: MNRAS 418, 545 (2011)ADSCrossRefGoogle Scholar
  13. 13.
    Das, A., Acharyya, K., Chakrabarti, S., Chakrabarti, S.K.: A&A 486, 209 (2008)ADSCrossRefGoogle Scholar
  14. 14.
    Das, A., Chakrabarti, S.K., Acharyya, K., Chakrabarti, S.: New A 13, 457 (2008)ADSCrossRefGoogle Scholar
  15. 15.
    Das, A., Acharyya, K., Chakrabarti, S.K.: MNRAS 409, 789 (2010)ADSCrossRefGoogle Scholar
  16. 16.
    Das, A., Majumdar, L., Chakrabarti, S.K., Chakrabarti, S.: NEWA 23, 118 (2013)ADSCrossRefGoogle Scholar
  17. 17.
    Das, A., Majumdar, L., Chakrabarti, S.K., Saha, R., Chakrabarti, S.: MNRAS 433, 3152 (2013)ADSCrossRefGoogle Scholar
  18. 18.
    Das, A., Majumdar, L., Chakrabarti, S.K., Sahu, D.: New Astron. 35, 53 (2015)ADSCrossRefGoogle Scholar
  19. 19.
    Das, A., Majumdar, L., Sahu, D., Gorai, P., Sivaraman, B., Chakrabarti, S.K.: Astrophys. J. 808, 21 (2015)ADSCrossRefGoogle Scholar
  20. 20.
    Das, A., Sahu, D., Majumdar, L., Chakrabarti, S.K.: MNRAS 455, 540 (2016)ADSCrossRefGoogle Scholar
  21. 21.
    Das, A., Sil, M., Gorai, P., Chakrabarti, S.K., Loison, J.-C.: ApJS 237, 9 (2018)ADSCrossRefGoogle Scholar
  22. 22.
    Elsila, E., Dworkin, J.P., Bernstein, M.P., Martin, M.P., Sandford, S.A.: ApJ 660, 911 (2007)ADSCrossRefGoogle Scholar
  23. 23.
    Etim, E.E., Gorai, P., Das, A., Arunan, E.: EPJD 71(4), 86 (2017)ADSCrossRefGoogle Scholar
  24. 24.
    Fourikis, N., Takagi, K., Morimoto, M.: ApJL 191, L139 (1974)ADSCrossRefGoogle Scholar
  25. 25.
    Frisch, M.J., Trucks, G.W., Schlegel, H.B., et al.: Gaussian 09, Revision D.01. Gaussian, Inc., Wallingford, CT (2013)Google Scholar
  26. 26.
    Glavin, D.P., Dworkin, J.P., Sandford, S.A.: M&PS 43, 399 (2008)ADSGoogle Scholar
  27. 27.
    Godfrey, P.D., Brown, R.D., Robinson, B.J., Sinclair, M.W.: ApJL 13, L119 (1973)Google Scholar
  28. 28.
    Gorai, P., Das, A., Das, A., et al.: ApJ 836, 70 (2017)ADSCrossRefGoogle Scholar
  29. 29.
    Holtom, P.D., Bennett, C.J., Osamura, Y., Mason, N.J., Kaiser, R.I.: ApJ 626, 940 (2005)ADSCrossRefGoogle Scholar
  30. 30.
    Kaifu, N., Morimoto, M., Nagane, K., et al.: ApJL 191, L135 (1974)ADSCrossRefGoogle Scholar
  31. 31.
    Katz, N., Furmann, I., Biham, O., Pironello, V., Vidali, G.: ApJ 522, 305 (1999)ADSCrossRefGoogle Scholar
  32. 32.
    Loomis, R.A., Zaleski, D.P., Steber, A.L., et al.: ApJL 765, L9 (2013)ADSCrossRefGoogle Scholar
  33. 33.
    Majumdar, L., Das, A., Chakrabarti, S.K., Chakrabarti, S.: RAA 12, 1613 (2012)ADSGoogle Scholar
  34. 34.
    Majumdar, L., Das, A., Chakrabarti, S.K., Chakrabarti, S.: NewA 20, 15 (2013)ADSCrossRefGoogle Scholar
  35. 35.
    Ohishi, M., Suzuki, T., Hirota, T., Saito, M., Kaifu, N.: (2017). arXiv:1708.06871Google Scholar
  36. 36.
    Pirronello, V., Liu, C., Roser, J.E., Vidali, G.: A&A 344, 681 (1999)ADSGoogle Scholar
  37. 37.
    Quan, D., Herbst. E., Corby, J.F., Durr. A., Hassel, G.: ApJ 824, 129 (2016)ADSCrossRefGoogle Scholar
  38. 38.
    Sahu, D., Das, A., Majumdar, L., Chakrabarti, S.K.: NEWA, 38, 23 (2015)ADSCrossRefGoogle Scholar
  39. 39.
    Sil, M., Gorai, P., Das, A., Sahu, D., Chakrabarti, S.K.: EPJD 71, 45 (2017)ADSCrossRefGoogle Scholar
  40. 40.
    Sil, M., Gorai, P., Das, A., Bhat, B., Etim, E.E., Chakrabarti, S.K.: ApJ 853(2), 139 (2018)ADSCrossRefGoogle Scholar
  41. 41.
    Suzuki, T., Ohishi, M., Hirota, T., et al.: ApJ 825, 1 (2016)CrossRefGoogle Scholar
  42. 42.
    Theule, P., Borget, F., Mispelaer, F., et al.: A&A 534, A64 (2011)ADSCrossRefGoogle Scholar
  43. 43.
    Tielens, A.G.G.M.: The Physics and Chemistry of the Interstellar Medium. Cambridge University Press, Cambridge (2010)Google Scholar
  44. 44.
    Vidali, G., Ihm, G., Kim, H.-Y., Cole, M.W.: Surf. Sci. Rep. 12, 133 (1991)ADSCrossRefGoogle Scholar
  45. 45.
    Woon, D.E.: ApJL 571, L177 (2002)ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Milan Sil
    • 1
  1. 1.Indian Centre for Space PhysicsKolkataIndia

Personalised recommendations