The Interstellar Molecular Complexity

  • Liton MajumdarEmail author
Conference paper
Part of the Astrophysics and Space Science Proceedings book series (ASSSP, volume 53)


One of the major questions of ‘Cradle of Life’ science theme of astronomy is how, when and where complex organic molecules, including the so-called prebiotic molecules, are formed. Key questions are: (1) which are the physicochemical processes that are involved in their production/destruction? and (2) whether grain surface processes or gas phase reactions prevail in their formation. Because of the success of large ground-based single dish telescopes (e.g. NRO 45 m, IRAM 30 m, GBT, ARO 12 m and NASA DSN) and interferometers (e.g. ALMA, NOEMA, and SMA) and space observatories (ISO, Spitzer, and Herschel), an interdisciplinary field has developed extending from astronomical instrumentation and observatories to laboratory astrophysics to theoretical chemical-dynamical modelings and to high level quantum computations. We are currently in an era to address the long-standing question of our ‘chemical origins’, that is, to understand the journey of organic molecules from pre-stellar cores to planet-forming disks, and finally to the Solar System bodies. Following this journey, which leads to the origin of life on Earth, is a Holy Grail of astronomy. I will review some of the significant results on the formation and detection of complex organic molecules, including prebiotic molecules and their organic precursors, towards star-forming regions.



L. Majumdar acknowledges support from the NASA postdoctoral program. A portion of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. L. Majumdar would like to thank Prof. Sandip K. Chakrabarti, Dr. Ankan Das and Dr. Taiki Suzuki for useful discussions on the manuscript.


  1. 1.
    Altwegg, K., Balsiger, H., Bar-Nun, A., Berthelier, J.J., Bieler, A., Bochsler, P., Briois, C., Calmonte, U., Combi, M.R., Cottin, H., De Keyser, J., Dhooghe, F., Fiethe, B., Fuselier, S.A., Gasc, S., Gombosi, T.I., Hansen, K.C., Haessig, M., Ja ckel, A., Kopp, E., Korth, A., Le Roy, L., Mall, U., Marty, B., Mousis, O., Owen, T., Reme, H., Rubin, M., Semon, T., Tzou, C.Y., Waite, J.H., Wurz, P.: Prebiotic chemicals–amino acid and phosphorus–in the coma of comet 67P/Churyumov-Gerasimenko. Sci. Adv. 2, e1600285–e1600285 (2016). ADSCrossRefGoogle Scholar
  2. 2.
    Bacmann, A., Taquet, V., Faure, A., Kahane, C., Ceccarelli, C.: Detection of complex organic molecules in a prestellar core: a new challenge for astrochemical models. Astron. Astrophys. 541, L12 (2012). ADSCrossRefGoogle Scholar
  3. 3.
    Bates, D.R.: Theory of molecular formation by radiative association in interstellar clouds. Astrophys. J. 270, 564–577 (1983). ADSCrossRefGoogle Scholar
  4. 4.
    Belloche, A., Garrod, R.T., Müller, H.S.P., Menten, K.M.: Detection of a branched alkyl molecule in the interstellar medium: iso-propyl cyanide. Science 345, 1584–1587 (2014). ADSCrossRefGoogle Scholar
  5. 5.
    Chakrabarti, S., Chakrabarti, S.K.: Can DNA bases be produced during molecular cloud collapse? Astron. Astrophys. 354, L6–L8 (2000)ADSGoogle Scholar
  6. 6.
    Chakrabarti, S.K., Chakrabarti, S.: Adenine abundance in a collapsing molecular cloud. Indian J. Phys. B 74, 97–99 (2000)ADSGoogle Scholar
  7. 7.
    Chakrabarti, S.K., Majumdar, L., Das, A., Chakrabarti, S.: Search for interstellar adenine. Astrophys. Space Sci. 357, 90 (2015). ADSCrossRefGoogle Scholar
  8. 8.
    Cuppen, H.M., Herbst, E.: Simulation of the formation and morphology of ice mantles on interstellar grains. Astrophys. J. 668, 294–309 (2007). ADSCrossRefGoogle Scholar
  9. 9.
    Danger, G., Borget, F., Chomat, M., Duvernay, F., Theulé, P., Guillemin, J.C., Le Sergeant D’Hendecourt, L., Chiavassa, T.: Experimental investigation of aminoacetonitrile formation through the Strecker synthesis in astrophysical-like conditions: reactivity of methanimine (CH2NH), ammonia (NH3), and hydrogen cyanide (HCN). Astron. Astrophys. 535, A47 (2011). CrossRefGoogle Scholar
  10. 10.
    Das, A., Chakrabarti, S.K.: Composition and evolution of interstellar grain mantle under the effects of photodissociation. Mon. Not. R. Astron. Soc. 418, 545–555 (2011). ADSCrossRefGoogle Scholar
  11. 11.
    Das, A., Chakrabarti, S.K., Acharyya, K., Chakrabarti, S.: Time evolution of simple molecules during proto-star collapse. New Astron. 13, 457–467 (2008). ADSCrossRefGoogle Scholar
  12. 12.
    Das, A., Acharyya, K., Chakrabarti, S.K.: Effects of initial condition and cloud density on the composition of the grain mantle. Mon. Not. R. Astron. Soc. 409, 789–800 (2010). ADSCrossRefGoogle Scholar
  13. 13.
    Das, A., Majumdar, L., Chakrabarti, S.K., Saha, R., Chakrabarti, S.: Formation of cyanoformaldehyde in the interstellar space. Mon. Not. R. Astron. Soc. 433, 3152–3164 (2013). ADSCrossRefGoogle Scholar
  14. 14.
    Dickens, J.E., Irvine, W.M., DeVries, C.H., Ohishi, M.: Hydrogenation of interstellar molecules: a survey for Methylenimine (CH2NH). Astrophys. J. 479, 307–312 (1997). ADSCrossRefGoogle Scholar
  15. 15.
    Ehrenfreund, P., Irvine, W., Becker, L., Blank, J., Brucato, J.R., Colangeli, L., Derenne, S., Despois, D., Dutrey, A., Fraaije, H., Lazcano, A., Owen, T., Robert, F., International Space Science Institute ISSI-Team: Astrophysical and astrochemical insights into the origin of life. Rep. Prog. Phys. 65, 1427–1487 (2002). ADSCrossRefGoogle Scholar
  16. 16.
    Gupta, V.P., Tandon, P., Rawat, P., Singh, R.N., Singh, A.: Quantum chemical study of a new reaction pathway for the adenine formation in the interstellar space. Astron. Astrophys. 528, A129 (2011). ADSCrossRefGoogle Scholar
  17. 17.
    Hasegawa, T.I., Herbst, E., Leung, C.M.: Models of gas-grain chemistry in dense interstellar clouds with complex organic molecules. Astrophys. J. Supp. 82, 167–195 (1992). ADSCrossRefGoogle Scholar
  18. 18.
    Herbst, E., van Dishoeck, E.F.: Complex organic interstellar molecules. Annu. Rev. Astron. Astrophys. 47, 427–480 (2009). ADSCrossRefGoogle Scholar
  19. 19.
    Hollis, J.M., Jewell, P.R., Lovas, F.J., Remijan, A.: Green bank telescope observations of interstellar glycolaldehyde: low-temperature sugar. Astrophys. J. Lett. 613, L45–L48 (2004). ADSCrossRefGoogle Scholar
  20. 20.
    Hollis, J.M., Jewell, P.R., Lovas, F.J., Remijan, A., Møllendal, H.: Green bank telescope detection of new interstellar aldehydes: propenal and propanal. Astrophys. J. Lett. 610, L21–L24 (2004). ADSCrossRefGoogle Scholar
  21. 21.
    Holtom, P.D., Bennett, C.J., Osamura, Y., Mason, N.J., Kaiser, R.I.: A combined experimental and theoretical study on the formation of the amino acid glycine (NH2CH2COOH) and its isomer (CH3NHCOOH) in extraterrestrial ices. Astrophys. J. 626, 940–952 (2005). ADSCrossRefGoogle Scholar
  22. 22.
    Kim, Y.S., Kaiser, R.I.: On the formation of amines (RNH2) and the cyanide anion (CN) in electron-irradiated ammonia-hydrocarbon interstellar model ices. Astrophys. J. 729, 68 (2011). ADSCrossRefGoogle Scholar
  23. 23.
    Kuan, Y.J., Charnley, S.B., Huang, H.C., Tseng, W.L., Kisiel, Z.: Interstellar glycine. Astrophys. J. 593, 848–867 (2003). ADSCrossRefGoogle Scholar
  24. 24.
    Majumdar, L., Das, A., Chakrabarti, S.K., Chakrabarti, S.: Hydro-chemical study of the evolution of interstellar pre-biotic molecules during the collapse of molecular clouds. Res. Astron. Astrophys. 12, 1613–1624 (2012). ADSCrossRefGoogle Scholar
  25. 25.
    Majumdar, L., Das, A., Chakrabarti, S.K., Chakrabarti, S.: Study of the chemical evolution and spectral signatures of some interstellar precursor molecules of adenine, glycine and alanine. New Astron. 20, 15–23 (2013). ADSCrossRefGoogle Scholar
  26. 26.
    McGuire, B.A., Carroll, P.B., Loomis, R.A., Finneran, I.A., Jewell, P.R., Remijan, A.J., Blake, G.A.: Discovery of the interstellar chiral molecule propylene oxide (CH3CHCH2O). Science 352, 1449–1452 (2016). ADSCrossRefGoogle Scholar
  27. 27.
    Merz Jr., K.M., Aguiar, E.C., da Silva, J.B.P.: Adenine formation without HCN. J. Phys. Chem. A 118, 3637–3644 (2014). CrossRefGoogle Scholar
  28. 28.
    Müller, H.S.P., Schlöder, F., Stutzki, J., Winnewisser, G.: The cologne database for molecular spectroscopy, CDMS: a useful tool for astronomers and spectroscopists. J. Mol. Struct. 742, 215–227 (2005). Google Scholar
  29. 29.
    Öberg, K.I., Guzmán, V.V., Furuya, K., Qi, C., Aikawa, Y., Andrews, S.M., Loomis, R., Wilner, D.J.: The comet-like composition of a protoplanetary disk as revealed by complex cyanides. Nature 520, 198–201 (2015). ADSCrossRefGoogle Scholar
  30. 30.
    Peltzer, E.T., Bada, J.L., Schlesinger, G., Miller, S.L.: The chemical conditions on the parent body of the murchison meteorite: Some conclusions based on amino, hydroxy and dicarboxylic acids. Adv. Space Res. 4, 69–74 (1984). ADSCrossRefGoogle Scholar
  31. 31.
    Qin, S.L., Wu, Y., Huang, M., Zhao, G., Li, D., Wang, J.J., Chen, S.: High-resolution submillimeter multiline observations of G19.61 - 0.23: small-scale chemistry. Astrophys. J. 711, 399–416 (2010). ADSCrossRefGoogle Scholar
  32. 32.
    Suzuki, T., Ohishi, M., Hirota, T., Saito, M., Majumdar, L., Wakelam, V.: Survey observations of a possible glycine precursor, methanimine (CH2NH). Astrophys. J. 825, 79 (2016). ADSCrossRefGoogle Scholar
  33. 33.
    Theule, P., Borget, F., Mispelaer, F., Danger, G., Duvernay, F., Guillemin, J.C., Chiavassa, T.: Hydrogenation of solid hydrogen cyanide HCN and methanimine CH2NH at low temperature. Astron. Astrophys. 534, A64 (2011). ADSCrossRefGoogle Scholar
  34. 34.
    Walsh, C., Loomis, R.A., Öberg, K.I., Kama, M., van ’t Hoff, M.L.R., Millar, T.J., Aikawa, Y., Herbst, E., Widicus Weaver, S.L., Nomura, H.: First detection of gas-phase methanol in a protoplanetary disk. Astrophys. J. Lett. 823, L10 (2016). ADSCrossRefGoogle Scholar
  35. 35.
    Woodall, J., Agúndez, M., Markwick-Kemper, A.J., Millar, T.J.: The UMIST database for astrochemistry 2006. Astron. Astrophys. 466, 1197–1204 (2007). ADSCrossRefGoogle Scholar
  36. 36.
    Woon, D.E.: Pathways to glycine and other amino acids in ultraviolet-irradiated astrophysical ices determined via quantum chemical modeling. Astrophys. J. Lett. 571, L177–L180 (2002). ADSCrossRefGoogle Scholar
  37. 37.
    Woon, D.E., Herbst, E.: Quantum chemical predictions of the properties of known and postulated neutral interstellar molecules. Astrophys. J. Supp. 185, 273–288 (2009). ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Jet Propulsion Laboratory, California Institute of TechnologyPasadenaUSA

Personalised recommendations