Advertisement

Do Spectral and Timing Properties Carry Information About Flow Geometry?

  • Partha Sarathi PalEmail author
Conference paper
Part of the Astrophysics and Space Science Proceedings book series (ASSSP, volume 53)

Abstract

X-ray binaries are enigmatic sources for their interesting variability properties. The variabilities are believed to be due to change in Two Component Accretion Flows. The accretion flow evolution also results in the change in geometry of the accretion discs. The results of LMXBs (e.g. GRS 1915+105, IGR J17091-3624, GRO J1650-44, GX 339-4 etc.) are analysed in dynamically determined energy bands instead of fixed energy bands as used in traditional hardness ratios. This approach revealed the geometry of accretion flow variation near the compact object through a mass independent general picture.

Notes

Acknowledgements

P. S. Pal acknowledges the Post-Doctoral Fellowship at Sun Yat-sen University, China.

References

  1. 1.
    Belloni, T., Klein-Wolt, M., Méndez, M., van der Klis, M., van Paradijs, J.: A model-independent analysis of the variability of GRS 1915+105. Astron. Astrophys. 355, 271–290 (2000)ADSGoogle Scholar
  2. 2.
    Chakrabarti, S.K., Manickam, S.G.: Correlation among quasi-periodic oscillation frequencies and quiescent-state duration in black hole candidate GRS 1915+105. Astrophys. J. Lett. 531, L41–L44 (2000). https://doi.org/10.1086/312512 ADSCrossRefGoogle Scholar
  3. 3.
    Chakrabarti, S., Titarchuk, L.G.: Spectral properties of accretion disks around galactic and extragalactic black holes. Astrophys. J. 455, 623 (1995). https://doi.org/10.1086/176610 ADSCrossRefGoogle Scholar
  4. 4.
    Chakrabarti, S.K., Nandi, A., Choudhury, A., Chatterjee, U.: Evidence of class transitions in GRS 1915+105 from Indian x-ray astronomy experiment data. Astrophys. J. 607, 406–409 (2004). https://doi.org/10.1086/383235 ADSCrossRefGoogle Scholar
  5. 5.
    Chakrabarti, S.K., Nandi, A., Chatterjee, A.K., Choudhury, A.K., Chatterjee, U.: Class transitions and two component accretion flow in GRS 1915+105. Astron. Astrophys. 431, 825–830 (2005). https://doi.org/10.1051/0004-6361:20041662 ADSCrossRefGoogle Scholar
  6. 6.
    Chakrabarti, S.K., Debnath, D., Nandi, A., Pal, P.S.: Evolution of the quasi-periodic oscillation frequency in GRO J1655-40 - implications for accretion disk dynamics. Astron. Astrophys. 489, L41–L44 (2008). https://doi.org/10.1051/0004-6361:200810136 ADSCrossRefGoogle Scholar
  7. 7.
    Chakrabarti, S.K., Dutta, B.G., Pal, P.S.: Accretion flow behaviour during the evolution of the quasi-periodic oscillation frequency of XTE J1550-564 in 1998 outburst. Mon. Not. R. Astron. Soc. 394, 1463–1468 (2009). https://doi.org/10.1111/j.1365-2966.2008.14328.x ADSCrossRefGoogle Scholar
  8. 8.
    Debnath, D., Chakrabarti, S.K., Nandi, A.: Properties of the propagating shock wave in the accretion flow around GX 339-4 in the 2010 outburst. Astron. Astrophys. 520, A98 (2010). https://doi.org/10.1051/0004-6361/201014990 ADSCrossRefGoogle Scholar
  9. 9.
    Dutta, B.G., Chakrabarti, S.K.: Evidence for two-component flows around the black hole candidate XTEJ1550-564 from spectral features during its 1998–1999 outburst. Mon. Not. R. Astron. Soc. 404, 2136–2142 (2010). https://doi.org/10.1111/j.1365-2966.2010.16428.x ADSGoogle Scholar
  10. 10.
    Dutta, B.G., Chakrabarti, S.K.: Temporal variability from the two-component advective flow solution and its observational evidence. Astrophys. J. 828, 101 (2016). https://doi.org/10.3847/0004-637X/828/2/101 ADSCrossRefGoogle Scholar
  11. 11.
    Dutta, B.G., Pal, P.S., Chakrabarti, S.K.: Evolution of accretion disc geometry of GRS 1915+105 during its χ state as revealed by TCAF solution. Mon. Not. R. Astron. Soc. 479, 2183–2192 (2018)ADSCrossRefGoogle Scholar
  12. 12.
    Friedman, H., Lichtman, S.W., Byram, E.T.: Photon counter measurements of solar x-rays and extreme ultraviolet light. Phys. Rev. 83, 1025–1030 (1951).  https://doi.org/10.1103/PhysRev.83.1025 ADSCrossRefGoogle Scholar
  13. 13.
    Giacconi, R., Gursky, H., Paolini, F.R., Rossi, B.B.: Evidence for x rays from sources outside the solar system. Phys. Rev. Lett. 9, 439–443 (1962).  https://doi.org/10.1103/PhysRevLett.9.439 ADSCrossRefGoogle Scholar
  14. 14.
    Giacconi, R., Kellogg, E., Gorenstein, P., Gursky, H., Tananbaum, H.: An x-ray scan of the galactic plane from UHURU. Astrophys. J. Lett. 165, L27 (1971). https://doi.org/10.1086/180711 ADSCrossRefGoogle Scholar
  15. 15.
    Greiner, J., Morgan, E.H., Remillard, R.A.: Rossi x-ray timing explorer observations of GRS 1915+105. Astrophys. J. Lett. 473, L107 (1996). https://doi.org/10.1086/310402 ADSCrossRefGoogle Scholar
  16. 16.
    Hasinger, G.: A classification of fast quasi-periodic X-ray oscillators - Is 6 HZ a fundamental frequency? Astron. Astrophys. 186, 153–158 (1987)ADSGoogle Scholar
  17. 17.
    Hasinger, G., van der Klis, M.: Two patterns of correlated X-ray timing and spectral behaviour in low-mass X-ray binaries. Astron. Astrophys. 225, 79–96 (1989)ADSGoogle Scholar
  18. 18.
    Hynes, R.I., Steeghs, D., Casares, J., Charles, P.A., O’Brien, K.: Dynamical evidence for a black hole in GX 339-4. Astrophys. J. Lett. 583, L95–L98 (2003). https://doi.org/10.1086/368108 ADSCrossRefGoogle Scholar
  19. 19.
    Klein-Wolt, M., Fender, R.P., Pooley, G.G., Belloni, T., Migliari, S., Morgan, E.H., van der Klis, M.: Hard X-ray states and radio emission in GRS 1915+105. Mon. Not. R. Astron. Soc. 331, 745–764 (2002). https://doi.org/10.1046/j.1365-8711.2002.05223.x ADSCrossRefGoogle Scholar
  20. 20.
    Makishima, K., Maejima, Y., Mitsuda, K., Bradt, H.V., Remillard, R.A., Tuohy, I.R., Hoshi, R., Nakagawa, M.: Simultaneous X-ray and optical observations of GX 339-4 in an X-ray high state. Astrophys. J. 308, 635–643 (1986). https://doi.org/10.1086/164534 ADSCrossRefGoogle Scholar
  21. 21.
    McClintock, J.E., Remillard, R.A.: Black Hole Binaries, pp. 157–213 (2006). ArXiv:astro-ph/0306213Google Scholar
  22. 22.
    Morgan, E.H., Remillard, R.A., Greiner, J.: RXTE observations of QPOs in the black hole candidate GRS 1915+105. Astrophys. J. 482, 993–1010 (1997). https://doi.org/10.1086/304191 ADSCrossRefGoogle Scholar
  23. 23.
    Muno, M.P., Morgan, E.H., Remillard, R.A.: Quasi-periodic oscillations and spectral states in GRS 1915+105. Astrophys. J. 527, 321–340 (1999). https://doi.org/10.1086/308063 ADSCrossRefGoogle Scholar
  24. 24.
    Pal, P.S., Chakrabarti, S.K.: A study of the variation of geometry of accretion flows of compact objects through timing and spectral analysis of their outbursts. Mon. Not. R. Astron. Soc. 440, 672–682 (2014).  https://doi.org/10.1093/mnras/stu319 ADSCrossRefGoogle Scholar
  25. 25.
    Pal, P.S., Chakrabarti, S.K.: Comptonizing efficiencies of IGR 17091-3624 and its similarity to GRS 1915+105. Adv. Space Res. 56, 1784–1792 (2015). https://doi.org/10.1016/j.asr.2015.07.016 ADSCrossRefGoogle Scholar
  26. 26.
    Pal, P.S., Chakrabarti, S.K., Nandi, A.: Evidence of variation of the accretion flow geometry in GRS 1915 + 105 from IXAE and RXTE data. Int. J. Mod. Phys. D. 20, 2281–2289 (2011). https://doi.org/10.1142/S0218271811020329 ADSCrossRefGoogle Scholar
  27. 27.
    Pal, P.S., Chakrabarti, S.K., Nandi, A.: Comptonization efficiencies of the variability classes of GRS 1915 + 105. Adv. Space Res. 52, 740–759 (2013). https://doi.org/10.1016/j.asr.2013.04.016 ADSCrossRefGoogle Scholar
  28. 28.
    Rao, A.R., Naik, S., Vadawale, S.V., Chakrabarti, S.K.: X-ray spectral components in the hard state of GRS 1915+105: origin of the 0.5–10 Hz QPO. Astron. Astrophys. 360, L25–L29 (2000)Google Scholar
  29. 29.
    Rodriguez, J., Durouchoux, P., Mirabel, I.F., Ueda, Y., Tagger, M., Yamaoka, K.: Energy dependence of a low frequency QPO in GRS 1915+105. Astron. Astrophys. 386, 271–279 (2002). https://doi.org/10.1051/0004-6361:20020218 ADSCrossRefGoogle Scholar
  30. 30.
    Schulz, N.S., Hasinger, G., Truemper, J.: Spectral classification of low-mass X-ray binary (LMXB) energy spectra with color-color diagrams. Astron. Astrophys. 225, 48–68 (1989)ADSGoogle Scholar
  31. 31.
    Sobczak, G.J., McClintock, J.E., Remillard, R.A., Bailyn, C.D., Orosz, J.A.: RXTE spectral observations of the 1996–1997 outburst of the microquasar GRO J1655-40. Astrophys. J. 520, 776–787 (1999). https://doi.org/10.1086/307474 ADSCrossRefGoogle Scholar
  32. 32.
    Tanaka, Y., Lewin, W.H.G.: Black hole binaries. In: X-Ray Binaries, pp. 126–174. Cambridge University Press, Cambridge (1995)Google Scholar
  33. 33.
    Titarchuk, L.: Generalized comptonization models and application to the recent high-energy observations. Astrophys. J. 434, 570–586 (1994). https://doi.org/10.1086/174760 ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Physics & AstronomySun Yat-sen UniversityGuangzhouChina

Personalised recommendations