Advertisement

Dynamics of Magnetic Flux Tubes in an Advective Flow Around Black Hole

  • Arnab Deb
Conference paper
Part of the Astrophysics and Space Science Proceedings book series (ASSSP, volume 53)

Abstract

Observational studies in the two spectral regions of the electromagnetic spectrum, in the domain of the hard X-rays on one hand, and in the domain of radio wavelengths on the other hand, revealed the existence of new stellar sources of relativistic jets known as micro-quasars (Mirabel et al. Nature 358(6383):215–217, 1992; Mirabel and Rodriguez, Nature 371(6492):46–48, 1994). It is seen that the relativistic jets with significant matter content are produced when the inner part of the disk is destroyed and evacuated (Chakrabarti and D’Silva, ApJ 424:138, 1994; Nandi et al. Astron. Astrophys. 380:245–250, 2001). Clearly, magnetic field has to play a major role in origin, acceleration and collimation of these relativistic jets. Due to predominantly rotating accretion flows close to the inner edge of a disk, entangled magnetic fields advected through the flow would be toroidal. This is particularly true for weakly viscous, low angular momentum transonic or advective discs. We focus our study to the trajectories of toroidal flux tubes inside a geometrically thick flow which undergoes a centrifugal force supported shock and also the effects of these flux tubes on the dynamics of the inflow and the outflow. Finite difference method (Total Variation Diminishing) is used for this purpose and specifically focussing on whether these flux tubes significantly affect the properties of the outflows such as its collimation and the rate. It is seen that depending upon the cross-sectional radius of the flux tubes which control the drag force, these field lines may move towards the central object or oscillate vertically before eventually escaping out of the funnel wall (pressure zero surfaces) along the vertical direction. A comparison of results obtained with and without flux tubes show these flux tubes indeed could play pivotal role in collimation and acceleration of jets and outflows.

References

  1. 1.
    Blandford, R.D., Payne, D.G.: MNRAS 199, 883 (1982)ADSCrossRefGoogle Scholar
  2. 2.
    Camenzind, M.: In: Belvedere, G. (ed.) Astrophysics and Space Science Library. Accretion Disks and Magnetic Fields in Astrophysics, vol. 156, pp. 129–143 (1989). https://doi.org/10.1007/978-94-009-2401-714
  3. 3.
    Chakrabarti, S.K.: ApJ 288, 1 (1985)ADSCrossRefGoogle Scholar
  4. 4.
    Chakrabarti, S.K.: ApJ 347, 365 (C89) (1989)Google Scholar
  5. 5.
    Chakrabarti, S.K.: Astron. Astrophys. 351, 185–191 (1999)ADSGoogle Scholar
  6. 6.
    Chakrabarti, S.K., Titarchuk, L.G.: Astrophys. J. 455, 623 (1995)ADSCrossRefGoogle Scholar
  7. 7.
    Chakrabarti, S.K., Titarchuk, L., Kazanas, D., Ebisawa, K.: Astron. Astrophys. Suppl. 120,163–166 (1996)ADSGoogle Scholar
  8. 8.
    Chakrabarti, S.K., Bhaskaran, P.: MNRAS 255, 255 (1992)ADSCrossRefGoogle Scholar
  9. 9.
    Chakrabarti, S.K., D’Silva, S.: ApJ 424, 138 (1994)ADSCrossRefGoogle Scholar
  10. 10.
    Chakrabarti, S.K., Rosner, R., Vainshtein, S.I.: Nature 368, 434 (1994)ADSCrossRefGoogle Scholar
  11. 11.
    Coroniti, F.V.: ApJ 244, 587 (1981)ADSCrossRefGoogle Scholar
  12. 12.
    D’Silva, S., Chakrabarti, S.K.: ApJ 424, 149 (1994)ADSCrossRefGoogle Scholar
  13. 13.
    Deb, A., Giri, K., Chakrabarti, S.K.: MNRAS 462, 3502 (2016)ADSCrossRefGoogle Scholar
  14. 14.
    Deb, A., Giri, K., Chakrabarti, S.K.: MNRAS 472(2), 1259–1271 (2017)ADSCrossRefGoogle Scholar
  15. 15.
    Eardley, D.M., Lightman, A.P.: ApJ 200, 187 (1975)ADSCrossRefGoogle Scholar
  16. 16.
    Galeev, A.A., Rosner, R., Vaiana, G.S.: ApJ 229, 318 (1979)ADSCrossRefGoogle Scholar
  17. 17.
    Giri, K., Chakrabarti, S.K., Samanta, M.M., Ryu, D.: MNRAS 403, 516 (2010)ADSCrossRefGoogle Scholar
  18. 18.
    Giri, K.: In: Giri, K. (ed.) Numerical Simulation of Viscous Shocked Accretion Flows Around Black Holes. Springer Theses. Springer, Berlin (2015). ISBN 978-3-319-09539-4Google Scholar
  19. 19.
    Goldstein, S.: Modern Developments in Fluid Mechanics, vol. 1. Clarendon Press, Oxford (1938)Google Scholar
  20. 20.
    Harten, A.: J. Comp. Phys. 49, 357 (1983)ADSCrossRefGoogle Scholar
  21. 21.
    Heyvaerts, J., Norman, C.: ApJ 347, 1055 (1989)ADSCrossRefGoogle Scholar
  22. 22.
    Khanna, R.: ASPC 178, 57 (1999)ADSGoogle Scholar
  23. 23.
    Khanna, R.: (1999). arXiv:astro-ph/9903091Google Scholar
  24. 24.
    Khanna, R., Camenzind, M.: Astron. Astrophys. 263, 401 (1992)ADSGoogle Scholar
  25. 25.
    Khanna, R., Camenzind, M.: A & A 307, 665 (1996)ADSGoogle Scholar
  26. 26.
    Khanna, R., Camenzind, M.: A & A 313, 1028 (1996)ADSGoogle Scholar
  27. 27.
    Königl A.: ApJ 342, 208 (1989)ADSCrossRefGoogle Scholar
  28. 28.
    Lovelace, R.V.E.: Nature 262, 649 (1976)ADSCrossRefGoogle Scholar
  29. 29.
    Lovelace, R.V.F., Wang, J.C.L., Sulkanen, M.E.: Astrophys. J. 315, 504 (1987)ADSCrossRefGoogle Scholar
  30. 30.
    Molteni, D., Lanzafame, G., Chakrabarti, S.K.: ApJ 425, 161 (1994)ADSCrossRefGoogle Scholar
  31. 31.
    Molteni D., Ryu D., Chakrabarti, S.K.: ApJ 470, 460 (1996)ADSCrossRefGoogle Scholar
  32. 32.
    Mirabel, I.F.; Rodrguez, L.F.: Nature 371(6492), 46–48 (1994)ADSCrossRefGoogle Scholar
  33. 33.
    Mirabel, I.F., Rodriguez, L.F., Cordier, B., Paul, J., Lebrun, F.: Nature 358(6383), 215–217 (1992)ADSCrossRefGoogle Scholar
  34. 34.
    Nandi, A., Chakrabarti, S.K., Vadawale, S.V., Rao, A.R.: Astron. Astrophys. 380, 245–250 (2001)ADSCrossRefGoogle Scholar
  35. 35.
    Paczyński, B., Wiita, P.J.: Astron. Astrophys. 88, 23 (1980)ADSGoogle Scholar
  36. 36.
    Rees, M.J., Begelman, M.C., Blandford, R.D., Phinney, E.S.: Nature 295, 17 (1982)ADSCrossRefGoogle Scholar
  37. 37.
    Ryu, D., Brown, G.L., Ostriker, J.P., Loeb, A.: ApJ 452, 364 (1995)ADSCrossRefGoogle Scholar
  38. 38.
    Ryu D., Chakrabarti, S.K., Molteni, D.: ApJ 474, 378 (1997)ADSCrossRefGoogle Scholar
  39. 39.
    Sakimoto P.J., Coroniti, F.V.: ApJ 342, 49 (1989)ADSCrossRefGoogle Scholar
  40. 40.
    Shibata, K., Tajima, T., Matsumoto, R.: ApJ 350, 295 (1990)ADSCrossRefGoogle Scholar
  41. 41.
    Wang, J.C.L., Sulkanen, M.E., Lovelace, R.V.: Astrophys. J. 355, 38 (1990)ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Arnab Deb
    • 1
  1. 1.S.N. Bose National Centre for Basic SciencesSalt Lake, KolkataIndia

Personalised recommendations