Advertisement

Parenting and Human Brain Development

  • Michael I. Posner
  • Mary K. Rothbart
Chapter

Abstract

This chapter traces important changes in brain systems between infancy and adulthood. Resting state magnetic resonance imaging (MRI) studies have traced changes in brain networks that support human behavior throughout the life span, and task-related MRI studies have traced changes in networks related to acquired skills. We concentrate on the brain networks involved in language and self-regulation because both are critical skills developing between infancy and later childhood.

While all children develop similar brain networks underlying language and self-regulation, the efficiency of these networks varies among people. We examine evidence from temperament and gene × environment interactions to support the role of parenting in the child’s development of self-control and literacy. It is important for parents, educators, and those involved in shaping public policy to understand what is known, and to appreciate what remains to be learned about brain development. While brain development does not in itself dictate the best policies for parenting it may help to inform parents and policy makers on how best to support child development.

Keywords

Attention EEG Gene × environment Language fMRI Self-regulation State Temperament 

Notes

Acknowledgement

The research for this chapter was supported in part by grants N00014-15-1-2022, and N00014-15-2148 from the Office of Naval Research to the University of Oregon. The authors appreciate the help of Pascale Voelker in this research.

Disclosure The authors declare that they have no disclosure.

References

  1. Abraham, E., Hendler, T., Zagoory-Sharon, O., & Feldman, R. (2016). Network integrity of the parental brain in infancy supports the development of children’s social competencies. Social, Cognitive and Affective Neuroscience, 11(11), 1707–1718.  https://doi.org/10.1093/scan/nsw090CrossRefGoogle Scholar
  2. Akhtar, N., & Gernsbacher, M. A. (2008). On Privileging the Role of Gaze in Infant Social Cognition. Child Development Perspectives, 2(2), 59–65.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Allman, J. M., Watson, K. K., Tetreault, N. A., & Hakeem, A. Y. (2005). Intuition and autism: A possible role for Von Economo neurons. Trends in Cognitive Science, 9(8), 367–373.  https://doi.org/10.1016/j.tics.2005.06.008CrossRefGoogle Scholar
  4. Amso, D., & Scerif, G. (2015). The attentive brain: Insights from developmental cognitive neuroscience. Nature Reviews Neuroscience, 16(10), 606–619.  https://doi.org/10.1038/nrn4025CrossRefPubMedPubMedCentralGoogle Scholar
  5. Bakermans-Kranenburg, M. J., & van Ijzendoorn, M. H. (2006). Gene-environment interaction of dopamine D4 receptor (DRD4) and observed maternal insensitivity predicting externalizing behavior in preschoolers. Developmental Psychobiology, 48(5), 406–409.  https://doi.org/10.1002/dev.20152CrossRefPubMedGoogle Scholar
  6. Bakermans-Kranenburg, M. J., van Ijzendoorn, M. H., Pijlman, F. T. A., Mesman, J., & Juffer, F. (2008). Experimental evidence for differential susceptibility: Dopamine D4 Receptor Polymorphism (DRD4 VNTR) moderates intervention effects on toddlers externalizing behavior in a randomized controlled trial. Developmental Psychology, 44(1), 293–300.  https://doi.org/10.1037/0012-1649.44.1.293CrossRefPubMedGoogle Scholar
  7. Baldwin, D. A. (1991). Infant contribution to the achievement of joint reference. Child Deveopment, 62, 875–890.CrossRefGoogle Scholar
  8. Barbero, A. C. (2016). Early development of executive attention. Grenada: University of Granada Press.Google Scholar
  9. Belsky, J., & de Haan, M. (2011). Parenting and children’s brain development: The end of the beginning. Journal of Child Psychology and Psychiatry, 52(4), 409–428.  https://doi.org/10.1111/j.1469-7610.2010.02281.xCrossRefPubMedGoogle Scholar
  10. Berger, A., Tzur, G., & Posner, M. I. (2006). Infant babies detect arithmetic error. Proceedings of the National Academy of Sciences of the USA, 103(33), 12649–12653.  https://doi.org/10.1073/pnas/0605350103CrossRefPubMedGoogle Scholar
  11. Bialystok, E. (2017). The bilingual adaptation: How minds accommodate experience. Psychological Bulletin, 143(3), 233–262.  https://doi.org/10.1037/bul0000099CrossRefPubMedPubMedCentralGoogle Scholar
  12. Bialystok, E., Craik, F., & Luk, G. (2012). Bilingualism: Consequences for mind and brain. Trends in Cognitive Science, 16, 240–250.  https://doi.org/10.1016/j.tics.2012.03.001CrossRefGoogle Scholar
  13. Brown, R. (1973). A first language: The early stages. Cambridge, MA: Harvard University Press. Retrieved from http://www.mpi.nl/publications/escidoc-2301263CrossRefGoogle Scholar
  14. Brown, T. T., & Jernigan, T. L. (2012). Brain development during the preschool years. Neuropsychology Review, 22(4), 313–333.  https://doi.org/10.1007/s11065-012-9214-1CrossRefPubMedPubMedCentralGoogle Scholar
  15. Bush, G., Luu, P., & Posner, M. I. (2000). Cognitive and emotional influences in anterior cingulate cortex. Trends in Cognitive Sciences, 4(6), 215–222.  https://doi.org/10.1016/S1364-6613(00)01483-2CrossRefPubMedGoogle Scholar
  16. Butcher, P. R. (2000). Longitudinal studies of visual attention in infants: The early development of disengagement and inhibition of return. Meppel: Aton.Google Scholar
  17. Cahn, B. R., & Polich, J. (2008). Meditation states and traits: EEG, ERP and neuroimaging studies. Psychological Bulletin, 132, 180–211.  https://doi.org/10.1037/0033-2909.132.2.180CrossRefGoogle Scholar
  18. Casey, B. J., Galvan, A., & Somerville, L. H. (2016). Beyond simple models of adolescence to an integrated circuit based account: A commentary. Developmental Cognitive Neuroscience, 17, 128–130.  https://doi.org/10.1016/j.dcn.2015.12.006CrossRefPubMedGoogle Scholar
  19. Clohessy, A. B., Posner, M. I., & Rothbart, M. K. (2001). Development of the functional visual field. Acta Psychologica, 106, 51–68.  https://doi.org/10.1016/S0001-6918(00)00026-3CrossRefPubMedGoogle Scholar
  20. Cohen, S., Glass, D. C., & Singer, J. E. (1973). Apartment noise, auditory discrimination, and reading ability in children. Journal of Experimental Social Psychology, 9(5), 407–442.  https://doi.org/10.1016/S0022-1031(73)80005-8CrossRefGoogle Scholar
  21. Colombo, J., & Horowitz, F. D. (1987). Behavioral state as a lead variable in neonatal research. Merrill Palmer Quarterly, 33(4), 423–438.Google Scholar
  22. Conboy, B. T., Brooks, R., Meltzoff, A. N., & Kuhl, P. K. (2015). Social interaction in infants’ learning of second-language phonetics: an exploration of brain-behavior relations. Developmental Neuropsychology, 40(4), 216–229.  https://doi.org/10.1080/87565641.2015.1014487CrossRefPubMedPubMedCentralGoogle Scholar
  23. Corbetta, M., & Shulman, G. L. (2002). Control of goal directed and stimulus driven attention in the brain. Nature Reviews Neuroscience, 3, 201–215.  https://doi.org/10.1038/nrn755CrossRefPubMedGoogle Scholar
  24. Costa, A., & Sebastian-Galles, N. (2017). How does the bilingual experience sculpt the brain? Nature Reviews Neuroscience, 15, 336–345.  https://doi.org/10.1038/nrn3709CrossRefGoogle Scholar
  25. Crottaz-Herbette, S., & Menon, V. (2006). Where and when the anterior cingulate cortex modulates attentional response: Combined fMRI and ERP evidence. Journal of Cognitive Neuroscience, 18(5), 766–780.  https://doi.org/10.1162/jocn.2006.18.5.766CrossRefPubMedGoogle Scholar
  26. Curtindale, L., Laurie-Rose, C., Bennett-Murphy, L., & Hull, S. (2007). Sensory modality, temperament and the development of sustained attention: A vigilance study in children and adults. Developmental Psychology, 43(3), 576–589.  https://doi.org/10.1037/0012-1649.43.3.576CrossRefPubMedGoogle Scholar
  27. Davidson, M. C., Amso, D., Anderson, L. C., & Diamond, A. (2006). Development of cognitive control and executive functions from 4 to 13 years: Evidence from manipulations of memory, inhibition, and task switching. Neuropsychologia, 44(11), 2037–2078.  https://doi.org/10.1016/j.neuropsychologia.2006.02.006CrossRefPubMedPubMedCentralGoogle Scholar
  28. Deen, B., Richardson, H., Dilka, D. D., Takahashi, A., Keil, R., Wald, L. L., … Saxe, R. (2017). Organization of high-level visual cortex in human infants. Nature Communications, 8, 13995.  https://doi.org/10.1038/ncomms12995CrossRefPubMedPubMedCentralGoogle Scholar
  29. Dehaene, S., Cohen, L., Morais, J., & Kolinsky, R. (2015). Illiterate to literate: Behavioral and cerebral changes induced by reading acquisition. Nature Reviews Neuroscience, 16, 234–244.  https://doi.org/10.1038/nrn3924CrossRefPubMedGoogle Scholar
  30. Dehaene-Lambertz, G., Hertz-Pannier, L., & Dubois, J. (2006). Nature and nurture in language acquisition: Anatomical and functional brain-imaging studies in infants. Trends in Neurosciences, 29(7), 367–373.  https://doi.org/10.1016/j.tins.2006.05.011CrossRefPubMedGoogle Scholar
  31. Dehaene-Lambertz, G., & Houston, D. (1998). Faster orientation latencies toward native language in two-month-old infants. Language and Speech, 41, 21–43.  https://doi.org/10.1177/002383099804100102CrossRefGoogle Scholar
  32. Diamond, A., & Lee, K. (2011). Interventions shown to aid executive function development in children 4–12 years old: An overview of methods of training attention and executive function in children. Science, 333, 959–964.  https://doi.org/10.1126/science.1204529CrossRefPubMedPubMedCentralGoogle Scholar
  33. Diamond, M. C., Krech, D., & Rosenzweig, M. R. (1964). The effects of an enriched environment on the rat cerebral cortex. Journal of Comparative Neurology, 123, 111–119.  https://doi.org/10.1002/cne.901230110CrossRefPubMedGoogle Scholar
  34. Dosenbach, N. U. F., Fair, D. A., Miezin, F. M., Cohen, A. L., Wenger, K. K. R., Dosenbach, A. T., … Petersen, S. E. (2007). Distinct brain networks for adaptive and stable task control in humans. Proceedings of the National Academy of Sciences of the USA, 104(26), 1073–1978.  https://doi.org/10.1073/pnas.0704320104CrossRefGoogle Scholar
  35. Eaton, L. K., Kinchen, S., Ross, J., Hawkins, J., Harris, W. A., Lowry, R., et al. (2006). Youth risk behavior surveillance- United States, 2005. surveillance summaries Morbidity and Mortality Weekly Report, 55(SS5), 1–108. PubMed. 16410759.Google Scholar
  36. Eggebrecht, A. T., Elison, J. T., Feczko, E., Todorov, A., Wolff, J. J., Kandala, S., … IBIS Network. (2017). Joint attention and brain functional connectivity in infants and toddlers. Cerebral Cortex, 27(3), 1709–1720.  https://doi.org/10.1093/cercor/bhw403CrossRefPubMedGoogle Scholar
  37. Emerson, R. W., Gao, W., & Lin, W. (2016). Longitudinal study of the emerging functional connectivity asymmetry of primary language regions during infancy. Journal of Neuroscience, 36(42), 10883–10892.  https://doi.org/10.1523/JNEUROSCI.3980-15.2016CrossRefPubMedGoogle Scholar
  38. Engle, P. A., Black, M. M., Behrman, J. R., de Mello, M. C., Gertler, P. J., Kapiriri, L., … the International Child Development Steering Group. (2007). Strategies to avoid the loss of developmental potential in more than 200 million children in the developing world. The Lancet, 369, 229–242.  https://doi.org/10.1016/S0140-6736(07)60112-3CrossRefGoogle Scholar
  39. Enns, J. T., & Brodeur, D. A. (1989). A developmental study of covert orienting to peripheral visual cues. Journal of Experimental Child Psychology, 48(2), 171–189.CrossRefPubMedGoogle Scholar
  40. Etkin, A., Egner, T., Peraza, D. M., Kandel, E. R., & Hirsch, J. (2006). Resolving emotional conflict: A role or the rostral anterior cingulate cortex in modulating activity in the amygdala. Neuron, 51(6), 871–882.  https://doi.org/10.1016/j.neurson.2006.07.029CrossRefPubMedGoogle Scholar
  41. Fair, D., Cohen, A. L., Dosenbach, A. U. F., Church, J. A., Meizin, F. M., Barch, D. M., … Schlagger, B. L. (2008). The maturing achitecture of the brain’s default network. Proceedings of the National Academy of Science USA, 105(1), 4028–4032.  https://doi.org/10.1073/pnas.0800376105CrossRefGoogle Scholar
  42. Fair, D. A., Cohen, A. L., Power, J. D., Dosenbach, N. U. F., Church, J. A., Miezin, F. M., … Petersen, S. E. (2009). Functional brain network develop from a “local to distributed” organization. PLoS Computational Biology, 5(5), 1–13.  https://doi.org/10.1371/journal.pcbi.1000381CrossRefGoogle Scholar
  43. Fair, D. A., Dosenbach, N. U. F., Church, J. A., Cohen, A. L., Brahmbhatt, S., Miezin, F. M., … Schlaggar, B. L. (2007). Development of distinct control networks through segregation and integration. Proceedings of the National Academy of Sciences of the United States of America, 104(33), 13507–13512. doi: https://doi.org/10.1073/pnas.0705843104CrossRefGoogle Scholar
  44. Fan, J., Fossella, J. A., Summer, T., Wu, Y., & Posner, M. I. (2003). Mapping the genetic variation of executive attention onto brain activity. Proceedings of the National Academy of Science USA, 100(12), 7406–7411.  https://doi.org/10.1073/pnas.0732088100CrossRefGoogle Scholar
  45. Fan, J., McCandliss, B. D., Sommer, T., Raz, M., & Posner, M. I. (2002). Testing the efficiency and independence of attentional networks. Journal of Cognitive Neuroscience, 14(3), 340–347.  https://doi.org/10.1162/089892902317361886CrossRefPubMedGoogle Scholar
  46. Fernald, A. (1991). Prosody and focus in speech to infants and adults. Annals of Child Development., 8, 43–80.Google Scholar
  47. Fjell, A. M., Walhovd, K., Brown, T., Kuperman, J., Chung, Y., Hagler, D., … Genetics Study. (2012). Multi-modal imaging of the self-regulating brain. Proceedings of the National Academy of Sciences of the United States of America, 109(48), 19620–19625.  https://doi.org/10.1073/pnas.1208243109CrossRefPubMedPubMedCentralGoogle Scholar
  48. Fox, K. C. R., Nijrboer, S., Dixon, M. L., Floman, J. L., Ellamil, M., Rumak, S. P., … Christoff, K. (2014). Is meditation associated with altered brain structure? A systematic review and meta-analysis of morphometric neuroimaging in meditation practitioners. Neuroscience and Biobehavioral Reviews, 43, 48–73.  https://doi.org/10.1016/j.neubiorev.2014.03.016CrossRefPubMedGoogle Scholar
  49. Fuemmeler, B. F., Lee, C.-T., Soubry, A., Iversen, E. S., Huang, Z., Murtha, A. P., … Hoyo, C. (2016). DNA methylation of regulatory regions of imprinted genes at birth and its relation to infant temperament. Genetics and Epigenetics, 8, 59–67.  https://doi.org/10.4137/GEG.S40538CrossRefPubMedGoogle Scholar
  50. Gao, W., Gilmore, J. H., Shen, D., Smith, J. K., Zhu, H., & Lin, W. (2013). The synchronization within and interaction between the default and dorsal attention networks in early infancy. Cerebral Cortex, 23(3), 594–603.  https://doi.org/10.1093/cercor/bhs043CrossRefPubMedGoogle Scholar
  51. Gao, W., Zhu, H., Giovanello, K. S., Smith, J. K., Shen, D., Gilmore, J. H., & Lin, W. (2009). Evidence on the emergence of the brain’s default network from 2-week old to 2-year old healthy pediatric subjects. Proceedings of the National Academy of Sciences of the USA, 106(16), 6790–6795.  https://doi.org/10.1073/pnas.0811221106CrossRefPubMedGoogle Scholar
  52. Gerardi-Caulton, G. (2000). Sensitivity to spatial conflict and the development of self-regulation in children 24-36 months of age. Developmental Science, 3(4), 397–404.  https://doi.org/10.1111/1467-7687.00134CrossRefGoogle Scholar
  53. Geschwin, N. (1965). Disconnection syndromes in animals and man. Brain, 88, 237–294.CrossRefGoogle Scholar
  54. Green, A. E., Munafo, M. R., DeYoung, C. G., Fossella, J. A., Fan, J., & Gray, J. R. (2008). Using genetic data in cognitive neuroscience: From growing pains to genuine insights. Nature Reviews Neuroscience, 9, 710–720.  https://doi.org/10.1038/nrn2461CrossRefPubMedGoogle Scholar
  55. Haith, M. M., Hazan, C., & Goodman, G. S. (1988). Expectation and anticipation of dynamic visual events by 3.5-month-old babies. Child Development, 59(2), 467–469.CrossRefPubMedGoogle Scholar
  56. Halperin, J. M., & Schultz, K. P. (2006). Revisiting the role of the prefrontal cortex in the pathophysiology of attention deficit/hyperactivity disorder. Psychological Bulletin., 132(4), 560–581.  https://doi.org/10.1037/0033-2909.132.4.560CrossRefPubMedGoogle Scholar
  57. Harman, C., Rothbart, M. K., & Posner, M. I. (1997). Distress and attention interactions in early infancy. Motivation and Emotion, 21(1), 27–43.Google Scholar
  58. Hart, B., & Risley, T. R. (2003). The early catastrophe: The 30 million word gap by age 3. American Educator, 27(1), 4–9.Google Scholar
  59. Hebb, D. O. (1949). The organization of behavior. New York, NY: Wiley.Google Scholar
  60. Hillman, C. H., Erickson, K. I., & Kramer, A. F. (2008). Be smart, exercise your heart: Exercise effects on brain and cognition. Nature Reviews Neuroscience, 9, 58–65.  https://doi.org/10.1038/nrn2298CrossRefPubMedGoogle Scholar
  61. Huttenlocher, P. R., & Dabholkar, J. C. (1997). Regional differences in synaptogenesis in human cerebral cortex. Journal of Comparative Neurology, 387(2), 167–178.CrossRefPubMedGoogle Scholar
  62. Jahn, A., Nee, D. E., Alexander, W. H., & Brown, J. W. (2016). Distinct regions within medial prefrontal cortex process pain and cognition. Journal of Neuroscience, 36(49), 12385–12392.  https://doi.org/10.1523/JNEUROSCI.2180-16.2016CrossRefPubMedGoogle Scholar
  63. Johnson, M. H., Posner, M. I., & Rothbart, M. K. (1991). Components of visual orienting in early infancy: Contingency learning, anticipatory looking and disengaging. Journal of Cognitive Neuroscience, 3(4), 335–344.  https://doi.org/10.1162/jocn.1991.3.4.335CrossRefPubMedGoogle Scholar
  64. Johnson, M. H., Posner, M. I., & Rothbart, M. K. (1994). Facilitation of saccades toward a covertly attended location in early infancy. Psychological Science, 5(2), 90–93.CrossRefGoogle Scholar
  65. Jones, L. B., Rothbart, M. K., & Posner, M. I. (2003). Development of executive attention in preschool children. Developmental Science, 6(5), 498–504.  https://doi.org/10.1111/1467-7687.00307CrossRefGoogle Scholar
  66. Jonkman, L. M., Lansbergen, M., & Stauder, J. E. A. (2003). Developmental differences in behavioral and event-related brain responses associated with response preparation and inhibition in a go/nogo. Psychophysiology, 40(5), 752–761.CrossRefPubMedGoogle Scholar
  67. Kim, P., Strathearn, L., & Swain, J. E. (2016). The maternal brain and its plasticity in humans. Hormones and Behavior, 77, 113–123.  https://doi.org/10.1016/j.yhbeh.2015.08.001CrossRefPubMedGoogle Scholar
  68. Kochanska, G., Murray, K. T., & Harlan, E. T. (2000). Effortful control in early childhood: Continuity and change, antecedents, and implications for social development. Developmental Psychology, 36(2), 220–232.CrossRefPubMedGoogle Scholar
  69. Kuhl, P. K. (2010). Brain mechanisms in early language acquisition. Neuron, 67(5), 713–727.  https://doi.org/10.1016/j.neuron/2010.08.038CrossRefPubMedPubMedCentralGoogle Scholar
  70. Kuhl, P. K., Conboy, B. T., Coffey-Corina, S., Padden, D., Rivera-Gaxiola, M., & Nelson, T. (2008). Phonetic learning as a pathway to language: New data and native language magnet theory expanded (NLM-e). Philosophical Transactions of the Royal Society, B363(1493), 979–1000.  https://doi.org/10.1098/rstb.2007.2154CrossRefGoogle Scholar
  71. Kuhl, P. K., Tsao, F. M., & Liu, H. M. (2003). Foreign language experience in infancy: Effects of short-term exposure and social interaction on phonetic learning. Proceedings of the National Academy of Sciences USA, 100(90), 96–9101.  https://doi.org/10.1073/pnas.1532872100CrossRefGoogle Scholar
  72. Lee, S. J., Steineer, R. J., Yang, Y., Short, S. J., Neale, M. C., Styner, M. A., … Gilmore, J. H. (2017). Common and heritable components of white matter microstructure predict cognitive function at 1 and 2 years. Proceedings of the National Academy of Science USA, 114(1), 148–153.  https://doi.org/10.1073/pnas.1604658114CrossRefGoogle Scholar
  73. Levy, F. (1980). The development of sustained attention (vigilance) in children: Some normative data. Journal of Child Psychology and Psychiatry, 21(1), 77–84.CrossRefPubMedGoogle Scholar
  74. Lewkowicz, D. J., & Hansen-Tift, A. M. (2012). Infants deploy selective attention to the mouth of a talking face when learning speech. Proceedings of the National Academy of Sciences USA, 109(5), 1431–1436.  https://doi.org/10.1073/pnas.1114783109CrossRefGoogle Scholar
  75. Lipina, S. J., & Posner, M. I. (2012). The impact of poverty on the development of brain Networks. Frontiers in Human Neuroscience, 6, 238.  https://doi.org/10.3389/fnhum.2012.00238CrossRefPubMedPubMedCentralGoogle Scholar
  76. Macleod, J. W., Lawrence, M. A., McConnell, M. M., Eskes, G. A., Klein, R. M., & Shore, D. I. (2010). Appraising the ANT: Psychometric and theoretical considerations of the Attention Network Test. Neuropsychology, 24(5), 637–651.  https://doi.org/10.1037/a0019803CrossRefPubMedGoogle Scholar
  77. Markant, J., Cicchetti, D., Hetzel, S., & Thomas, K. M. (2014). Contributions of COMT Val158 Met to cognitive stability and flexibility in infancy. Development Science, 17(3), 396–411.  https://doi.org/10.1111/desc.121218CrossRefGoogle Scholar
  78. Marrocco, R. T., & Davidson, M. C. (1998). Neurochemistry of attention. In R. Parasuraman (Ed.), The attentive brain (pp. 35–50). Cambridge, MA: MIT Press.Google Scholar
  79. McCandliss, B. D., Sandak, R., Beck, I., & Perfetti, C. (2003). Focusing attention on decoding for children with poor reading skills: Design and preliminary tests of the Word Building intervention. Scientific Studies of Reading, 7(1), 75–105.  https://doi.org/10.1207/S1532799XSSR0701_05CrossRefGoogle Scholar
  80. Moffitt, T. E., Arseneault, L., Belsky, D., Dickson, N., Hancox, R. J., Harrington, H. L., … Caspi, A. (2011). A gradient of childhood self-control predicts health, wealth and public safety. Proceedings of the National Academy of Sciences of the USA, 108(7), 2693–2698.  https://doi.org/10.1073/pnas.1010076108CrossRefPubMedGoogle Scholar
  81. Molfese, D. L. (2000). Predicting dyslexia at eight years of age using neonatal brain responses. Brain and Language, 72(3), 238–245.  https://doi.org/10.1006/brin.2000.2287CrossRefPubMedGoogle Scholar
  82. Molko, N., Cohen, J., Mangin, J. F., Chochon, F., Lehericy, S., Le Bihan, D., & Dehaene, S. (2002). Visualizing the neural basis of a disconnection syndrome with diffusion tensor imaging. Journal of Cognitive Neuroscience, 14(4), 629–636.  https://doi.org/10.1162/08989290260045864CrossRefPubMedGoogle Scholar
  83. Montag, J. L., Jones, M. N., & Smith, L. B. (2015). The words children hear: Picture books and the statistics for language learning. Psychological Science, 26(9), 1489–1496.  https://doi.org/10.1177/0956797615594361CrossRefPubMedPubMedCentralGoogle Scholar
  84. Moore, J. K., & Guan, Y. L. (2001). Cytoarchitectural and axonal maturation in human auditory cortex. Journal of the Association for Research in Otolaryngology, 2, 297–311.  https://doi.org/10.1007/s101620010052CrossRefPubMedPubMedCentralGoogle Scholar
  85. Mundy, P., Block, J., Delgado, C., Pomares, Y., Van Hecke, A. V., & Parlade, M. V. (2007). Individual differences and the development of joint attention in infancy. Child Development, 78, 938–954.  https://doi.org/10.1111/j.1467-8624.2007.0142.xCrossRefPubMedPubMedCentralGoogle Scholar
  86. Neville, H. J., Stevens, C., Pakulak, E., Bell, T. A., Fanning, J., Klein, S., & Isbell, E. (2013). Family-based training program improves brain function, cognition, and behavior in lower socioeconomic status preschoolers. Proceedings of the National Academy of Sciences USA, 110(29), 12138–12143.  https://doi.org/10.1073/pnas.1304437110CrossRefGoogle Scholar
  87. Ospina, M. B., Bond, K., Karkhaneh, M., Buscemi, N., Dryden, D. M., Barnes, V., … Shannahoff- Khalsa, D. (2008). Clinical trials of meditation practices in health care: Characteristics and quality. Journal of Alternative and Complementary Medicine, 14(10), 1199–1213.  https://doi.org/10.1089/acm.2008.0307CrossRefPubMedGoogle Scholar
  88. Perlman, S. B., & Pelphrey, K. A. (2001). Developing connections for affective regulation: Age-related changes in emotional brain connectivity. Journal of Experimental Child Psychology, 108(3), 607–620.  https://doi.org/10.1016/j.jecp.2010.08.006CrossRefGoogle Scholar
  89. Petersen, S. E., Fox, P. T., Posner, M. I., Mintun, M., & Raichle, M. E. (1987). Positron emission tomographic studies of the cortical anatomy of single word processing. Nature, 331, 585–589.  https://doi.org/10.1038/331585a0CrossRefGoogle Scholar
  90. Petersen, S. E., & Posner, M. I. (2012). The attention system of the human brain: 20 years after. Annual Review of Neuroscience, 35, 71–89.  https://doi.org/10.1146/annurev-neuro-062111-150525CrossRefGoogle Scholar
  91. Posner, M. I. (1978). Chronometric explorations of mind. Hillsdale, NJ: Lawrence Erlbaum Associates.Google Scholar
  92. Posner, M. I. (2008). Measuring alertness. Annals of the New York Academy of Sciences: Molecular and Biophysical Mechanisms of Arousal, Alertness, and Attention, 1129, 193–199.  https://doi.org/10.1196/anals.1417.011CrossRefGoogle Scholar
  93. Posner, M. I., & Rothbart, M. K. (2007). Research on attention networks as a model for the integration of psychological science. Annual Review of Psychology, 58, 1–23.  https://doi.org/10.1146/annurev.psych.58.110405.085516CrossRefPubMedGoogle Scholar
  94. Posner, M. I., Rothbart, M. K., Sheese, B. E., & Voelker, P. (2014). Developing attention: behavioral and brain mechanisms. Advances in Neuroscience, 2014, 405094.  https://doi.org/10.1155/2014/405094CrossRefPubMedGoogle Scholar
  95. Posner, M. I., Rothbart, M. K., & Tang, Y. Y. (2015). Enhancing attention through training. Current Opinion in Behavioral Sciences, 4, 1–5.  https://doi.org/10.1016/j.cobeha.2014.12.008CrossRefGoogle Scholar
  96. Posner, M. I., Sheese, B., Odludas, Y., & Tang, Y. (2006). Analyzing and shaping neural networks of attention. Neural Networks, 19, 1422–1429.  https://doi.org/10.1016/j.neunet.2006.08.004CrossRefPubMedGoogle Scholar
  97. Power, J. D., Barnes, K. A., Snyder, A. Z., Schlaggar, B. L., & Petersen, S. E. (2012). Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. Neuroimage, 59(3), 2142–2154.  https://doi.org/10.1016/j.neuroimage.2011.10.018CrossRefPubMedGoogle Scholar
  98. Putnam, S. P., Sanson, A. V., & Rothbart, M. K. (2002). Child temperament and parenting. In M. Bornstein (Ed.), Handbook of parenting: Vol. 1: Children and parenting (2nd ed., pp. 255–277). Mahwah, NJ: Erlbaum.Google Scholar
  99. Raichle, M. E. (2009). A paradigm shift in functional brain imaging. Journal of Neuroscience, 29, 127–134.  https://doi.org/10.1016/j.neuroimage.2011.10.018CrossRefGoogle Scholar
  100. Richards, J. E., & Hunter, S. K. (1998). Attention and eye movements in young infants: Neural control and development. In J. E. Richards (Ed.), Cognitive neuroscience of attention. Mahwah, NJ: LEA.CrossRefGoogle Scholar
  101. Rothbart, M. K. (2011). Becoming who we are: Temperament and Personality in Development. New York, NY: Guilford Press.Google Scholar
  102. Rothbart, M. K., & Bates, J. E. (2006). Temperament. In W. Damon, R. Lerner, & N. Eisenberg (Eds.), Handbook of child psychology, Social, emotional, and personality development (Vol. 3, Sixth ed., pp. 99–106). New York: Wiley.Google Scholar
  103. Rothbart, M. K., Ellis, L. K., Rueda, M. R., & Posner, M. I. (2003). Developing mechanisms of effortful control. Journal of Personality, 71(6), 1113–1143.CrossRefPubMedGoogle Scholar
  104. Rothbart, M. K., & Rueda, M. R. (2005). The development of effortful control. In U. Mayr, E. Awh, & S. W. Keele (Eds.), Developing individuality in the human brain: A tribute to Michael I. Posner (pp. 167–188). Washington, DC: American Psychological Association.CrossRefGoogle Scholar
  105. Rothbart, M. K., & Sheese, B. E. (2007). Temperament and emotion regulation. In J. J. Gross (Ed.), Handbook of emotion regulation (pp. 331–350). New York: Guilford Press.Google Scholar
  106. Rueda, M. R., Checa, P., & Combita, L. M. (2012). Enhanced efficiency of the executive attention network after training in preschool children: Immediate changes and effects after two months. Developmental Cognitive Neuroscience, 2(1), S192–S204.  https://doi.org/10.1016/j.dcn.2011.09.004CrossRefPubMedGoogle Scholar
  107. Rueda, M. R., Fan, J., Halparin, J., Gruber, D., Lercari, L. P., McCandliss, B. D., & Posner, M. I. (2004). Development of attention during childhood. Neuropsychologia, 42, 1029–1040.CrossRefPubMedGoogle Scholar
  108. Rueda, M. R., Pozuelos, J. P., & Combita, L. M. (2015). Cognitive neuroscience of attention: From brain mechanisms to individual differences in efficiency. AIMS Neuroscience, 2(4), 183–202.  https://doi.org/10.3934/Neuroscience.2015.3.183CrossRefGoogle Scholar
  109. Rueda, M. R., Rothbart, M. K., McCandliss, B. D., Saccamanno, L., & Posner, M. I. (2005). Training, maturation and genetic influences on the development of executive attention. Proceedings of the National Academy of Sciences of the USA, 102(41), 14931–14936.  https://doi.org/10.1073/pnas.0506897102CrossRefPubMedGoogle Scholar
  110. Saygin, Z. M., Osher, D. E., Norton, E. S., Youssoufian, D. A., Beach, S. D., Feather, J., … Kanwisher, N. (2016). Connectivity precedes function in the development of the visual word form area. Nature Neuroscience, 19(9), 1250–1255.  https://doi.org/10.1038/nn.4354CrossRefPubMedPubMedCentralGoogle Scholar
  111. Schul, R., Townsend, J., & Stiles, J. (2003). The development of attentional orienting during the school-age years. Developmental Science, 6(3), 262–272.  https://doi.org/10.1111/1467-7687.00282CrossRefGoogle Scholar
  112. Sedlmeier, P., Eberth, J., Schwarz, M., Zimmermann, D., Haarig, F., Jaeger, S., & Kunz, S. (2012). The psychological effects of meditation: A meta-analysis. Psychological Bulletin, 138, 1139–1171.  https://doi.org/10.1037/a0028168CrossRefPubMedGoogle Scholar
  113. Segalowitz, S. J., & Davies, P. L. (2004). Charting the maturation of the frontal lobe: An electrophysiological strategy. Brain and Cognition, 55(1), 116–133.  https://doi.org/10.1016/S0278-2626(03)00283-5CrossRefPubMedGoogle Scholar
  114. Shackman, A. J., Saolmons, T. V., Slagter, H. A., Fox, A. S., Winter, J. J., & Davidson, R. J. (2011). The integration of negative affect, pain and cognitive control in the cingulate cortex. Nature Reviews Neuroscience, 12(3), 154–167.  https://doi.org/10.1038/nrn2994CrossRefPubMedPubMedCentralGoogle Scholar
  115. Sheese, B. E., Voelker, P. M., Rothbart, M. K., & Posner, M. I. (2007). Parenting quality interacts with genetic variation in Dopamine Receptor DRD4 to influence temperament in early childhood. Development and Psychopathology, 19(4), 1039–1046.  https://doi.org/10.1017/S0954579407000521CrossRefPubMedGoogle Scholar
  116. Shneider-Hassloff, H., Zwonitzer, A., Kunster, A. K., Mayer, C., Ziegenhain, L., & Kiefer, M. (2016). Emotional availability modulates electrophysiological correlates of executive function in preschool children. Frontiers in Human Neuroscience, 10, 299–310.  https://doi.org/10.3389/fnhum.2016.00299CrossRefGoogle Scholar
  117. Shulman, G. L., Astafiev, S. V., Franke, D., Pope, D. L. W., Snyder, A. Z., McAvoy, M. P., & Corbett, M. (2009). Interaction of stimulus-driven reorienting and expectation in ventral and dorsal frontoparietal and basal ganglia-cortical networks. Journal of Neuroscience, 29, 4392–4407.  https://doi.org/10.1523/JNEUROSCI.5609-08.2009CrossRefPubMedGoogle Scholar
  118. Silvers, J. A., Insel, C., Powers, A., Franz, P., Helion, C., Martin, R., … Ochsner, K. N. (2017). The transition from childhood to adolescence is marked by a general decrease in amygdala reactivity and an affect-specific ventral-to-dorsal shift in medial prefrontal recruitment. Dev Cogn Neurosci, 25, 128–137.  https://doi.org/10.1016/j.dcn.2016.06.005CrossRefPubMedGoogle Scholar
  119. Smith, L. B., & Yu, C. (2013). Visual attention is not enough: Individual differences in statistical word-referent learning in infants. Language Learning and Development, 9, 11–18.  https://doi.org/10.1080/15475441.2012.707104CrossRefGoogle Scholar
  120. Somerville, L. H., Hare, T., & Casey, B. J. (2011). Frontostriatal maturation predicts cognitive control failure to appetitive cues in adolescents. Journal of Cognitive Neuroscience, 23(9), 2123–2134.  https://doi.org/10.1162/jocn.2010.21572CrossRefPubMedGoogle Scholar
  121. Stevens, M. C. (2016). The contributions of resting state and task-based functional connectivity studies to our understanding of adolescent brain network maturation. Neuroscience and Biobehavioral Review, 70, 13–32.  https://doi.org/10.1016/j.neurbiorev.2016.07.027CrossRefGoogle Scholar
  122. Swanson, J., Oosterlaan, J., Murias, M., Schuck, S., Flodman, P., Spence, M. A., … Posner, M. I. (2000). Attention deficit/hyperactivity disorder children with a 7-repeat allele of the dopamine receptor D4 gene have extreme behavior but normal performance on critical neuropsychological tests of attention. Proceedings of National Academy of Sciences, 97, 4754–4759.CrossRefGoogle Scholar
  123. Swingler, M. M., Perry, N. B., Calkins, S. D., & Bell, M. A. (2014). Maternal sensitivity and infant response to frustration: The moderating role of EEG asymmetry. Infant Behavior and Development, 37(4), 523–535.  https://doi.org/10.1016/j.infbeh.2014.06.010CrossRefPubMedGoogle Scholar
  124. Tang, Y., Lu, Q., Geng, X., Stein, E. A., Yang, Y., & Posner, M. I. (2010). Short term mental training induces white-matter changes in the anterior cingulate. Proceedings of the National Academy of Science USA, 107(35), 16649–16652.  https://doi.org/10.1073/pnas.1011043107CrossRefGoogle Scholar
  125. Tang, Y. Y., Ma, Y., Wang, J., Fan, Y., Feng, S., Lu, Q., … Posner, M. I. (2007). Short term meditation training improves attention and self regulation. Proceedings of the National Academy of Science USA, 104(43), 17152–17156.  https://doi.org/10.1073/pnas.0707678104CrossRefGoogle Scholar
  126. Tang, Y. Y., & Posner, M. I. (2009). Attention training and attention state training. Trends in Cognitive Sciences, 13(5), 222–227.  https://doi.org/10.1016/j.tics.2009.01.009CrossRefPubMedGoogle Scholar
  127. Tang, Y. Y., Posner, M. I., & Rothbart, M. K. (2014). Meditation improves self-regulation over the life span. In Advances in meditation research: Neuroscience and clinical applications. New York Academy of Sciences (Vol. 1307, pp. 104–111).  https://doi.org/10.1111/nyas.12227CrossRefGoogle Scholar
  128. Vago, D. A., & Silbersweig, D. A. (2012). Self awareness, self regulation and self transcendence (S-ART): A framework for understanding the neurobiological mechanisms of mindfulness. Frontiers Human Neuroscience, 6, 1–30.  https://doi.org/10.3389/fnhum.2012.00296CrossRefGoogle Scholar
  129. Vally, Z., Murray, L., Tomlinson, M., & Cooper, P. J. (2015). The impact of dialogic book-sharing training on infant language and attention: A randomized controlled trial in a deprived South African community. Journal of Child Psychology and Psychiatry, 56(8), 865–873.  https://doi.org/10.1111/jcpp.12352CrossRefPubMedGoogle Scholar
  130. van Ijzendoorn, M. H., & Bakermans-Kranenburg, M. J. (2006). DRD4 7-repeat polymorphism moderates the association between maternal unresolved loss or trauma and infant disorganization. Attachment and Human Development, 8(4), 291–307.  https://doi.org/10.1080/14616730601048159CrossRefPubMedGoogle Scholar
  131. Voelker, P., Rothbart, M. K., & Posner, M. I. (2016). A polymorphism related to methylation influences attention during performance of speeded skills. AIMS Neuroscience, 3(1), 40–55.  https://doi.org/10.3934/Neuroscience.2016.1.40CrossRefGoogle Scholar
  132. Wainwright, A., & Bryson, S. E. (2002). The development of exogenous orienting: Mechanisms of control. Journal of Experimental Child Psychology, 82(2), 141–155.CrossRefPubMedGoogle Scholar
  133. Walter, G. (1964). The convergence and interaction of visual, auditory and tactile responses in human non-specific cortex. Ann. N. Y. Acad. Sci., 112, 320–361.CrossRefPubMedGoogle Scholar
  134. Weeland, J., Overbeek, G., Orbio de Castro, B., & Matthys, W. (2015). Underlying Mechanisms of Gene–Environment Interactions in Externalizing Behavior: A Systematic Review and Search for Theoretical Mechanisms. Clinical Child and Family Psychology Review, 18(4), 413–442.CrossRefPubMedPubMedCentralGoogle Scholar
  135. Werker, J. F., & Tees, R. C. (1984). Cross language speech perception: Evidence for perceptual reorganization in the first year of life. Infant behavior and development, 7(1), 49–63.  https://doi.org/10.1016/S0163-6383(84)80022-3CrossRefGoogle Scholar
  136. Wierenga, L., Langen, M., Ambrosino, S., van Dijk, S., Oranje, B., & Durston, S. (2014). Typical development of basal ganglia, hippocampus, amygdala and cerebellum from age 7 to 24. Neuroimage, 96, 67–72.  https://doi.org/10.1016/j.neuroimage.2014.03.072CrossRefPubMedGoogle Scholar
  137. Wynn, K. (1992). Addition and subtraction by human infants. Nature, 358(6389), 749–750.  https://doi.org/10.1038/358749a0CrossRefPubMedGoogle Scholar
  138. Zilles, K. (2005). Evolution of the human brain and comparative syto and receptor architecture. In S. Dehaene, J.-R. Duhamel, M. D. Hauser, & G. Rizzolatti (Eds.), Monkey brain to human brain (pp. 41–56). Cambridge, MA: MIT Press, Bradford Books.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.University of OregonEugeneUSA

Personalised recommendations