Advertisement

SKKU Hand Arm System: Hardware and Control Scheme

  • Dongmin Choi
  • Byung-jin Jung
  • Hyungpil Moon
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 816)

Abstract

In this work, we introduce the SKKU Hand Arm System I (SKKU-HAS-I) focusing on the hardware design and control scheme of the arm and hand systems. For the robot arm system, a driving module unit is designed and the workspace analysis is performed for the arm. A Virtual Spring Damper based controller is applied to the arm system for the task of the control. The design of the robot hand is based on mimicking the human hand and we perform an optimization process for three different design measures, workspace intersection volumes, manipulability, and opposing angles. The developed robot hand is equipped with various sensors for the contact information. Experimental results are provided for the evaluation of the developed robot hand.

Keywords

Hand Arm System Anthropomorphic robotic hand Light weight arm Robot joint module Compliance control Grasping 

References

  1. 1.
    Hogan, N.: Impedance control: an approach to manipulation: Part I. Theory, Part II. Implementation, Part III. Application. ASME Trans. Dynamic Syst. Meas. Control 107, 12–24 (1985)Google Scholar
  2. 2.
    Flash, T., Hogan, N.: The coordination of arm movements: an experimentally confirmed mathematical model. J. Neurosci. 5(7), 1688–1703 (1985)CrossRefGoogle Scholar
  3. 3.
    Flash, T.: The control of hand equilibrium trajectories in multi-joint arm movements. Biol. Cybern. 57(4/5), 257–274 (1987)CrossRefGoogle Scholar
  4. 4.
    Alexander, B., Viktor, K.: Proportions of hand segments. Int. J. Morphol. 28(3), 755–758 (2010)Google Scholar
  5. 5.
    Butterfass, J., Grebenstein, M., Liu, H., Hirzinger, G.: DLR-Hand II: next generation of a dextrous robot hand. In: IEEE International Conference on Robotics and Automation, vol. 1, pp. 109–114 (2001)Google Scholar
  6. 6.
    Cobos, S., Ferre, M., Sanchez Uran, M.A., Ortego, J., Pena, C.: Efficient human hand kinematics for manipulation tasks. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2246–2251 (2008)Google Scholar
  7. 7.
    Cobos, S., Ferre, M., Sánchez-Urán, M.A., Ortego, J.: Constraints for realistic hand manipulation. In: Proceedings of the Presence, pp. 369–370 (2007)Google Scholar
  8. 8.
    Ezaki, M.: Atlas of hand anatomy and clinical implications. J. Bone Joint Surg. Am. 86(12), 2799–2800 (2004)CrossRefGoogle Scholar
  9. 9.
    Feix, T., Romero, J., Schmiedmayer, H.-B., Dollar, A.M., Kragic, D.: The GRASP taxonomy of human grasp types. IEEE Trans. Hum. Mach. Syst. 46(1), 66–77 (2016)CrossRefGoogle Scholar
  10. 10.
    Grebenstein, M., Chalon, M., Hirzinger, G., Siegwart, R.: Antagonistically driven finger design for the anthropomorphic DLR Hand Arm System. In: 10th IEEE-RAS International Conference on Humanoid Robots, pp. 609–616 (2010)Google Scholar
  11. 11.
    Hasan, M.R., Vepa, R., Shaheed, H., Huijberts, H.: Modelling and control of the Barrett Hand for grasping. In: 2013 UKSim 15th International Conference on Computer Modelling and Simulation, pp. 230–235 (2013)Google Scholar
  12. 12.
    Liu, H., Meusel, P., Hirzinger, G., Jin, M., Liu, Y., Xie, Z.: The modular multisensory DLR-HIT-Hand: hardware and software architecture. IEEE/ASME Trans. Mechatron. 13(4), 461–469 (2008)CrossRefGoogle Scholar
  13. 13.
    Jacobsen, S., Iversen, E., Knutti, D., Johnson, R., Biggers, K.: Design of the Utah/M.I.T. dextrous hand. In: Proceedings of the IEEE International Conference on Robotics and Automation, vol. 3, pp. 1520–1532 (1986)Google Scholar
  14. 14.
    Kawasaki, H., Komatsu, T., Uchiyama, K.: Dexterous anthropomorphic robot hand with distributed tactile sensor: Gifu Hand II. IEEE/ASME Trans. Mechatron. 7(3), 296–303 (2002)CrossRefGoogle Scholar
  15. 15.
    Loucks, C., Johnson, V., Boissiere, P., Starr, G., Steele, J.: Modeling and control of the stanford/JPL hand. In: Proceedings of the IEEE International Conference on Robotics and Automation, vol. 4, pp. 57–578 (1987)Google Scholar
  16. 16.
    Meagher, D.: Geometric modeling using octree encoding. Comput. Graph. Image Process. 19(2), 129–147 (1982)CrossRefGoogle Scholar
  17. 17.
    Napier, J.R., Tuttle, R.H.: Hands. Princeton University Press, Princeton (1993)Google Scholar
  18. 18.
    Rothling, F., Haschke, R., Steil, J.J., Ritter, H.: Platform portable anthropomorphic grasping with the bielefeld 20-DOF shadow and 9-DOF TUM hand. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2951–2956 (2007)Google Scholar
  19. 19.
    Salisbury, J.: Active stiffness control of a manipulator in Cartesian coordinates. In: 19th IEEE Conference on Decision and Control Including the Symposium on Adaptive Processes, pp. 95–100 (1980)Google Scholar
  20. 20.
    Vande Weghe, M., Rogers, M., Weissert, M., Matsuoka, Y.: The ACT Hand: design of the skeletal structure. In: IEEE International Conference on Robotics and Automation, vol. 4, pp. 3375–3379 (2004)Google Scholar
  21. 21.
    Yoshikawa, T.: Manipulability of robotic mechanisms. Int. J. Robot. Res. 4(2), 3–9 (1985)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Mechanical EngineeringSungkyunkwan UniversitySuwonKorea

Personalised recommendations