Advertisement

Advanced Grasping with the Pisa/IIT SoftHand

  • Manuel Bonilla
  • Cosimo Della Santina
  • Alessio Rocchi
  • Emanuele Luberto
  • Gaspare Santaera
  • Edoardo Farnioli
  • Cristina Piazza
  • Fabio Bonomo
  • Alberto Brando
  • Alessandro Raugi
  • Manuel G. Catalano
  • Matteo Bianchi
  • Manolo Garabini
  • Giorgio Grioli
  • Antonio Bicchi
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 816)

Abstract

This chapter presents the hardware, software and overall strategy used by the team UNIPI-IIT-QB to participate to the Robotic Grasping and Manipulation Competition. It relies on the PISA/IIT SoftHand, which is underactuated soft robotic hand that can adapt to the grasped object shape and is compliant with the environment. It was used for the hand-in-hand and for the simulation tracks, where the team reached first and third places respectively.

Keywords

Grasping Grasp simulation Grasp planning 

Notes

Acknowledgements

This research has received funding from the European Union’s Horizon 2020 Research and Innovation Programme under Grant Agreement No. 645599 (SOMA).

References

  1. 1.
    Ajoudani, A., et al.: A manipulation framework for compliant humanoid COMAN: application to a valve turning task. In: IEEE-RAS International Conference on Humanoid Robots (Humanoids), pp. 664–670. IEEE (2014)Google Scholar
  2. 2.
    Bernstein, N.A.: The Co-ordination and Regulation of Movements, 1st edn. Pergamon Press Ltd., New York (1967)Google Scholar
  3. 3.
    Bicchi, A., Gabiccini, M., Santello, M.: Modelling natural and artificial hands with synergies. Philos. Trans. R. Soc. B: Biol. Sci. 366(1581), 3153–3161 (2011)CrossRefGoogle Scholar
  4. 4.
    Birglen, L., Gosselin, C.M., Laliberté, T.: Underactuated Robotic Hands, vol. 40. Springer, Heidelberg (2008)Google Scholar
  5. 5.
    Bonilla, M., et al.: Grasping with soft hands. In: IEEE-RAS International Conference on Humanoid Robots (Humanoids), Madrid, Spain, 18–20 November 2014Google Scholar
  6. 6.
    Brown, C.Y., Asada, H.H.: Inter-finger coordination and postural synergies in robot hands via mechanical implementation of principal components analysis. In: IEEE International Conference on Intelligent Robots and Systems (IROS), pp. 2877–2882. IEEE (2007)Google Scholar
  7. 7.
    Brygo, A., et al.: Synergy-based interface for bilateral tele-manipulations of a master-slave system with large asymmetries. In: International Conference on Robotics and Automation (2016)Google Scholar
  8. 8.
    Cannon, J.R., Howell, L.L.: A compliant contact-aided revolute joint. Mech. Mach. Theory 40(11), 1273–1293 (2005)CrossRefGoogle Scholar
  9. 9.
    Catalano, M.G., et al.: Adaptive synergies for the design and control of the Pisa/IIT SoftHand. Int. J. Robot. Res. (IJRR) 33, 768–782 (2014).  https://doi.org/10.1177/0278364913518998CrossRefGoogle Scholar
  10. 10.
    Ciocarlie, M., Goldfeder, C., Allen, P.: Dexterous grasping via eigengrasps: a low-dimensional approach to a high-complexity problem. In: Robotics: Science and Systems Manipulation Workshop-Sensing and Adapting to the Real World. Citeseer (2007)Google Scholar
  11. 11.
    MSC Software Corp. Adams. http://www.mscsoftware.com/product/adams. Accessed 26 Aug 2015
  12. 12.
    Deimel, R., Brock, O.: A compliant hand based on a novel pneumatic actuator. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 2047–2053 (2013).  https://doi.org/10.1109/ICRA.2013.6630851
  13. 13.
    Deimel, R., Brock, O.: A novel type of compliant, underactuated robotic hand for dexterous grasping. In: Robotics: Science and Systems, Berkeley, CA, pp. 1687–1692 (2014)Google Scholar
  14. 14.
    Santina, C.D., et al.: Dexterity augmentation on a synergistic hand: the Pisa/IIT SoftHand+. In: IEEE-RAS International Conference on Humanoid Robots (Humanoids), pp. 497–503. IEEE (2015)Google Scholar
  15. 15.
    Eppner, C., Brock, O.: Planning grasp strategies that exploit environmental constraints. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 4947–4952 (2015).  https://doi.org/10.1109/ICRA.2015.7139886
  16. 16.
    Garland, M., Heckbert, P.S.: Surface simplification using quadric error metrics. In: Proceedings of the 24th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH 1997, pp. 209–216. ACM Press/Addison-Wesley Publishing Co., New York (1997)Google Scholar
  17. 17.
    Geidenstam, S., et al.: Learning of 2D grasping strategies from box-based 3D object approximations. In: Robotics: Science and Systems (RSS), Seattle, USA (2009)Google Scholar
  18. 18.
    Godfrey, S.B., et al.: A synergy-driven approach to a myoelectric hand. In: 2013 IEEE International Conference on Rehabilitation Robotics (ICORR), pp. 1–6. IEEE (2013)Google Scholar
  19. 19.
    Grebenstein, M., et al.: The DLR hand arm system. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 3175–3182. IEEE (2011)Google Scholar
  20. 20.
    Grioli, G., et al.: Adaptive synergies: an approach to the design of under-actuated robotic hands. In: IEEE International Conference on Intelligent Robots and Systems (IROS), pp. 1251–1256. IEEE (2012)Google Scholar
  21. 21.
    Hauser, K.: Robust contact generation for robot simulation with unstructured meshes. In: International Symposium on Robotics Research, Singapore (2013)Google Scholar
  22. 22.
    Hillberry, B.M., Hall Jr., A.S.: Rolling contact joint. US Patent 3,932,045 (1976)Google Scholar
  23. 23.
    Hirose, S.: Connected differential mechanism and its applications. In: Proceedings of 2nd ICAR, pp. 319–326 (1985)Google Scholar
  24. 24.
    Kappler, D., Bohg, J., Schaal, S.: Leveraging big data for grasp planning. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 4304–4311. IEEE (2015)Google Scholar
  25. 25.
    Kim, J., et al.: Physically based grasp quality evaluation under pose uncertainty. IEEE Trans. Robot. 29(6), 1424–1439 (2013). ISSN: 1552–3098,  https://doi.org/10.1109/TRO.2013.2273846CrossRefGoogle Scholar
  26. 26.
    Laliberté, T., Birglen, L., Gosselin, C.: Underactuation in robotic grasping hands. Mach. Intell. Robot. Control 4(3), 1–11 (2002)Google Scholar
  27. 27.
    Latash, M.L.: Fundamentals of Motor Control. Academic Press, New York (2012)Google Scholar
  28. 28.
    Ma, R.R., Odhner, L.U., Dollar, A.M.: A modular, open-source 3D printed underactuated hand. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 2737–2743 (2013).  https://doi.org/10.1109/ICRA.2013.6630954
  29. 29.
    Miller, A.T., Allen, P.K.: Examples of 3D grasp quality computations. In: IEEE International Conference on Robotics and Automation, pp. 1240–1246. IEEE (1999)Google Scholar
  30. 30.
    Odhner, L.U., et al.: A compliant, underactuated hand for robust manipulation. Int. J. Robot. Res. (IJRR) 33(5), 736–752 (2014).  https://doi.org/10.1177/0278364913514466CrossRefGoogle Scholar
  31. 31.
    RightHand Robotics. Reflex SF Spec Sheet. http://www.righthandrobotics.com/main:reflex. Accessed 26 Aug 2015
  32. 32.
    Robotiq. 3-finger adaptive robot gripper spec sheet. http://robotiq.com/products/industrial-robot-hand/. Accessed 26 Aug 2015
  33. 33.
    Rocchi, A., Hauser, K.: A generic simulator for underactuated compliant hands. In: 2016 IEEE International Conference on Simulation, Modeling, and Programming for Autonomous Robots (SIMPAR) (2016)Google Scholar
  34. 34.
    Rocchi, A., et al.: Stable simulation of underactuated compliant hands. In: IEEE International Conference on Robotics and Automation (ICRA) (2016)Google Scholar
  35. 35.
    Rosales, C.J.: Pisa/IIT Soft Hand. https://github.com/CentroEPiaggio/pisa-iit-soft-hand. Accessed 26 Aug 2015
  36. 36.
    Santello, M., Flanders, M., Soechting, J.F.: Postural hand synergies for tool use. J. Neurosci. 18(23), 10105–10115 (1998)CrossRefGoogle Scholar
  37. 37.
    Wimboeck, T., Ott, C., Hirzinger, G.: Passivity-based object-level impedance control for a multifingered hand. In: IEEE International Conference on Intelligent Robots and Systems (IROS), pp. 4621–4627. IEEE (2006)Google Scholar
  38. 38.
    Kai, X., et al.: Design of an underactuated anthropomorphic hand with mechanically implemented postural synergies. Adv. Robot. 28(21), 1459–1474 (2014)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Manuel Bonilla
    • 1
  • Cosimo Della Santina
    • 2
  • Alessio Rocchi
    • 1
  • Emanuele Luberto
    • 2
  • Gaspare Santaera
    • 1
  • Edoardo Farnioli
    • 1
  • Cristina Piazza
    • 2
  • Fabio Bonomo
    • 3
  • Alberto Brando
    • 3
  • Alessandro Raugi
    • 3
  • Manuel G. Catalano
    • 1
  • Matteo Bianchi
    • 2
    • 4
  • Manolo Garabini
    • 2
  • Giorgio Grioli
    • 1
  • Antonio Bicchi
    • 1
    • 2
  1. 1.Soft Robotics for Human Cooperation and RehabilitationIstituto Italiano di TecnologiaGenoaItaly
  2. 2.Centro E. PiaggioUniversitá di PisaPisaItaly
  3. 3.QB RoboticsPisaItaly
  4. 4.Department of Information EngineeringUniversitá di PisaPisaItaly

Personalised recommendations