Nonlinear Guided Waves and Thermal Stresses

  • Francesco Lanza di ScaleaEmail author
  • Ankit Srivastava
  • Claudio Nucera


The first part of the chapter covers theoretical considerations and numerical modeling of higher-harmonic generation in elastic waves propagating in nonlinear prismatic waveguides, including plates, rods, and waveguides of arbitrary cross-sections and/or of inhomogeneous and anisotropic composition. The main purpose of these analyses is to identify suitable combinations of primary and secondary guided modes for the waveguide. The last part of the chapter examines the role of thermal stresses in higher-harmonic wave generation. The latter topic is relevant to the prevention of thermal buckling of slender structural components (e.g., rail tracks).


Nondestructive testing Ultrasonic waves Waveguides Nonlinearity Nonlinear elasticity Wave equation Perturbation theory Finite element analysis Semi-analytical finite element method Defect detection Thermal stress measurement Thermal buckling plates Rods Rails 


  1. 1.
    M.F. Hamilton, D.T. Blackstock, Nonlinear Acoustics (Acoustical Society of America, New York, 2008)Google Scholar
  2. 2.
    A. Jeffrey, J. Engelbrecht, Nonlinear Waves in Solids (Springer, Berlin-New York, 1994)CrossRefzbMATHGoogle Scholar
  3. 3.
    A.V. Porubov, Amplification of Nonlinear Strain Waves in Solids (World Scientific Pub Co, Singapore, 2003)CrossRefzbMATHGoogle Scholar
  4. 4.
    A.M. Samsonov, Strain Solitons in Solids and how to Construct them (CRC Press, Boca Raton, 2001)CrossRefzbMATHGoogle Scholar
  5. 5.
    M. Deng, Second-harmonic properties of horizontally polarized shear modes in an isotropic plate. Jap. J. Appl. Phys. 35, 4004–4010 (1996)CrossRefGoogle Scholar
  6. 6.
    M. Deng, Cumulative second-harmonic generation accompanying nonlinear shear horizontal mode propagation in a solid plate. J. Appl. Phys. 84, 3500 (1998)CrossRefGoogle Scholar
  7. 7.
    M. Deng, Cumulative second-harmonic generation of Lamb-mode propagation in a solid plate. J. Appl. Phys. 85, 3051 (1999)CrossRefGoogle Scholar
  8. 8.
    W.J.N. De Lima, M.F. Hamilton, Finite-amplitude waves in isotropic elastic plates. J. Sound Vibr. 265, 819–839 (2003)CrossRefGoogle Scholar
  9. 9.
    M. Deng, Analysis of second-harmonic generation of Lamb modes using a modal analysis approach. J. Appl. Phys. 94, 4152 (2003)CrossRefGoogle Scholar
  10. 10.
    B.A. Auld, Acoustic Fields and Waves in Solids (R.E. Krieger, Malabar, 1990)Google Scholar
  11. 11.
    W.J.N. De Lima, M.F. Hamilton, Finite amplitude waves in isotropic elastic waveguides with arbitrary constant cross-sectional area. Wave Motion 41, 1–11 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    M. Deng, Assessment of accumulated fatigue damage in solid plates using nonlinear Lamb wave approach. Appl. Phys. Lett. 90, 121902 (2007)CrossRefGoogle Scholar
  13. 13.
    A. Srivastava, F. Lanza di Scalea, On the existence of antisymmetric or symmetric Lamb waves at nonlinear higher harmonics. J. Sound Vibr. 323, 932–943 (2009)CrossRefGoogle Scholar
  14. 14.
    A. Srivastava, F. Lanza di Scalea, On the existence of longitudinal or flexural waves in rods at nonlinear higher harmonics. J. Sound Vibr. 329, 1499–1506 (2010)CrossRefGoogle Scholar
  15. 15.
    A. Srivastava, I. Bartoli, S. Salamone, F. Lanza di Scalea, Higher harmonic generation in nonlinear waveguides of arbitrary cross-section. J. Acoust. Soc. Am. 127, 2790–2796 (2010)CrossRefGoogle Scholar
  16. 16.
    M.F. Muller, J.K. Kim, J. Qu, L.J. Jacobs, Characteristics of second harmonic generation of lamb waves in nonlinear elastic plates. J. Acoust. Soc. Am. 127, 2141–2152 (2010)CrossRefGoogle Scholar
  17. 17.
    C. Bermes, J.Y. Kim, J.M. Qu, L.J. Jacobs, Experimental characterization of material nonlinearity using Lamb waves. Appl. Phys. Lett. 90, 021901 (2007)CrossRefGoogle Scholar
  18. 18.
    N. Matsuda, S. Biwa, Phase and group velocity matching for cumulative harmonic generation in lamb waves. J. Appl. Phys. 109, 094903 (2011)CrossRefGoogle Scholar
  19. 19.
    K.H. Matlack, J.J. Wall, J.Y. Kim, J. Qu, L.J. Jacobs, H.W. Viehrig, Evaluation of radiation damage using nonlinear ultrasound. J. Appl. Phys. 111, 1–3 (2012)CrossRefGoogle Scholar
  20. 20.
    V.K. Chillara, C.J. Lissenden, Interaction of guided wave modes in isotropic weakly nonlinear elastic plates: higher harmonic generation. J. Appl. Phys. 111, 124909 (2012)CrossRefGoogle Scholar
  21. 21.
    V.K. Chillara, C.J. Lissenden, D.O. Thompson, D.E. Chimenti, Higher harmonic guided waves in isotropic weakly nonlinear elastic plates. AIP Conf. Proc. 1511, 145–150 (2013)CrossRefGoogle Scholar
  22. 22.
    Y. Liu, V.K. Chillara, C.J. Lissenden, On selection of primary modes for generation of strong internally resonant second harmonics in plate. J. Sound Vibr. 332, 4517–4528 (2013)CrossRefGoogle Scholar
  23. 23.
    V.K. Chillara, C.J. Lissenden, Analysis of second harmonic guided waves in pipes using a large-radius asymptotic approximation for axis-symmetric longitudinal modes. Ultrasonics 53, 862–869 (2013)CrossRefGoogle Scholar
  24. 24.
    N. Matsuda, S. Biwa, Frequency dependence of second-harmonic generation in Lamb waves. J. Nondestruct. Eval. 33, 169–177 (2014)CrossRefGoogle Scholar
  25. 25.
    R. Radecki, M.J. Lemay, T. Uhl, W.J. Staszewski, Z. Su, L. Cheng, P. Packo, Investigation on high–order harmonic generation of guided waves using local computation approaches: theory and comparison with analytical modelling. in 7th European Workshop on Structural Health Monitoring, 8–11 July (Nantes, France, 2014)Google Scholar
  26. 26.
    M. Ryles, F.H. Ngau, I. McDonald, W.J. Staszewski, Comparative study of nonlinear acoustic and Lamb wave techniques for fatigue crack detection in metallic structures. Fatigue Fract. Eng. Mech. 31, 674–683 (2008)CrossRefGoogle Scholar
  27. 27.
    V.K. Chillara, C.J. Lissenden, Review of nonlinear ultra sonic guided wave nondestructive evaluation: theory, numerics, and experiments. Opt. Eng. 55, 011002–011002 (2016)CrossRefGoogle Scholar
  28. 28.
    M. Deng, Y.X. Xiang, L.B. Liu, Time-domain analysis and experimental examination of cumulative second-harmonic generation by primary Lamb wave propagation. J. Appl. Phys. 109, 113525 (2011)CrossRefGoogle Scholar
  29. 29.
    Z.A. Goldberg, Interaction of plane longitudinal and transverse elastic waves. Sov. Phys. Acoust. 6, 306–310 (1961)Google Scholar
  30. 30.
    A.C. Eringen, E.S. Suhubi, Elastodynamics (Academic Press, New York, 1975)zbMATHGoogle Scholar
  31. 31.
    A.I. Lurie, Nonlinear Elasticity (Nauka Publishers, Moscow, 1980)Google Scholar
  32. 32.
    J. Engelbrecht, Nonlinear Wave Processes of Deformation in Solids (Pitman Advanced Pub. Program, Boston, 1983)zbMATHGoogle Scholar
  33. 33.
    K.A. Lurie, Nonlinear Theory of Elasticity (North-Holland, Amsterdam, 1990)zbMATHGoogle Scholar
  34. 34.
    F.D. Murnaghan, Finite Deformations (Wiley, New York, 1951)Google Scholar
  35. 35.
    L.D. Landau, E.M. Lifshitz, Theory of Elasticity (Addison-Wesley Pub. Co, London, 1959)zbMATHGoogle Scholar
  36. 36.
    R. Truell, C. Elbaum, B. Chick, Ultrasonic Methods in Solid State Physics (Academic Press, New York, 1969)Google Scholar
  37. 37.
    A.H. Meitzler, Mode coupling occurring in the propagation of elastic pulses in wires. J. Acoust. Soc. Am. 33, 435 (1961)CrossRefGoogle Scholar
  38. 38.
    C. Nucera, F. Lanza di Scalea, Nonlinear semi-analytical finite element algorithm for the analysis of internal resonance conditions in complex waveguides. ASCE J Eng Mech 140, 502–522 (2014)CrossRefGoogle Scholar
  39. 39.
    C. Nucera, F. Lanza di Scalea, Nondestructive measurement of neutral temperature in continuous welded rails by nonlinear ultrasonic guided waves. J. Acoust. Soc. Am. 136, 2561–2574 (2014)CrossRefGoogle Scholar
  40. 40.
    C. Nucera, F. Lanza di Scalea, Modeling of nonlinear guided waves and applications to structural health monitoring. ASCE J Comput Civ Eng 29, B40140011–B401400115 (2015)CrossRefGoogle Scholar
  41. 41.
    N. Apetre, M. Ruzzene, S. Hanagud, S Gopalakrishnan, Nonlinear spectral methods for the analysis of wave propagation. in 49th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference (Schaumburg, IL, 7–10 April, 2008)Google Scholar
  42. 42.
    B. Aalami, Waves in prismatic guides of arbitrary cross-section. J Appl Mech-T ASME 40, 1067–1077 (1973)CrossRefGoogle Scholar
  43. 43.
    P.E. Lagasse, Higher-order finite-element analysis of topographic guides supporting elastic surface-waves. J. Acoust. Soc. Am. 53, 1116–1122 (1973)CrossRefGoogle Scholar
  44. 44.
    L. Gavrić, Finite-element computation of dispersion properties of thin-walled waveguides. J. Sound Vib. 173, 113–124 (1994)CrossRefzbMATHGoogle Scholar
  45. 45.
    L. Gavrić, Computation of propagative waves in free rail using a finite element technique. J. Sound Vib. 185, 531–543 (1995)CrossRefzbMATHGoogle Scholar
  46. 46.
    K.H. Huang, S.B. Dong, Propagating waves and edge vibrations in anisotropic composite cylinders. J. Sound Vib. 96, 363–379 (1984)CrossRefzbMATHGoogle Scholar
  47. 47.
    S. Finnveden, Spectral finite element analysis of the vibration of straight fluid-filled pipes with flanges. J. Sound Vib. 199, 125–154 (1997)CrossRefGoogle Scholar
  48. 48.
    A.C. Hladky Hennion, Finite element analysis of the propagation of acoustic waves in waveguides. J. Sound Vib. 194, 119–136 (1996)CrossRefGoogle Scholar
  49. 49.
    T. Mazuch, Wave dispersion modelling in anisotropic shells and rods by the finite element method. J. Sound Vib. 198, 429–438 (1996)CrossRefGoogle Scholar
  50. 50.
    U. Orrenius, S. Finnveden, Calculation of wave propagation in rib-stiffened plate structures. J. Sound Vib. 198, 203–224 (1996)CrossRefGoogle Scholar
  51. 51.
    I. Bartoli, A. Marzani, F. Lanza di Scalea, E. Viola, Modeling wave propagation in damped waveguides of arbitrary cross-section. J. Sound Vib. 295, 685–707 (2006)CrossRefGoogle Scholar
  52. 52.
    T. Hayashi, W.J. Song, J.L. Rose, Guided wave dispersion curves for a bar with an arbitrary cross-section, a rod and rail example. Ultrasonics 41, 175–183 (2003)CrossRefGoogle Scholar
  53. 53.
    P.W. Loveday, Semi-analytical finite element analysis of elastic waveguides subjected to axial loads. Ultrasonics 49, 298–300 (2009)CrossRefGoogle Scholar
  54. 54.
    S.S. Sekoyan, A.E. Eremeev, Measurement of the third-order elasticity constants for steel by the ultrasonic method. Meas. Tech. 0543–1972, 888–893 (1966)CrossRefGoogle Scholar
  55. 55.
    E. Onate, Structural Analysis with the Finite Element Method. Linear Statics – Volume I (Springer, Dordrecht, 2009)CrossRefzbMATHGoogle Scholar
  56. 56.
    A. Bernard, M. Deschamps, M.J.S. Lowe, Energy velocity and group velocity for guided waves propagating within an absorbing or non-absorbing plate in vacuum. Rev Progr Quant NDE 18, 183–190 (1999)Google Scholar
  57. 57.
    A. Bernard, M.J.S. Lowe, M. Deschamps, Guided waves energy velocity in absorbing and non-absorbing plates. J. Acoust. Soc. Am. 110, 186–196 (2001)CrossRefGoogle Scholar
  58. 58.
    M.V. Predoi, M. Castaings, B. Hosten, C. Bacon, Wave propagation along transversely periodic structures. J. Acoust. Soc. Am. 121, 1935–1944 (2007)CrossRefGoogle Scholar
  59. 59.
    B. Pavlakovic, M.J.S. Lowe, Disperse User Manual (Imperial College, London, 2003)Google Scholar
  60. 60.
    C. Cattani, Y.Y. Rushchitskii, Wavelet and Wave Analysis as Applied to Materials with Micro or Nanostructure (World Scientific Pub. Co., Hackensack, 2007)CrossRefzbMATHGoogle Scholar
  61. 61.
    W.H. Prosser, Ultrasonic characterization of the nonlinear elastic properties of unidirectional graphite/epoxy composites. NASA Contr. Rep. 4100, 75–120 (1987)Google Scholar
  62. 62.
    D.E. Knuth, Axioms and Hulls (Springer, Berlin-New York, 1992)CrossRefzbMATHGoogle Scholar
  63. 63.
    A. Bouhadjera, Simulation of in-situ concrete conditions using a novel ultrasonic technique. in Proceedings of 16th World Conf Non-Destructive Testing (2004)Google Scholar
  64. 64.
    C. Payan, V. Garnier, J. Moysan, Potential of nonlinear ultrasonic indicators for nondestructive testing of concrete. Adv. Civ. Eng. 2010, 1–8 (2009)Google Scholar
  65. 65.
    M.A. Biot, Nonlinear thermoelasticity, irreversible thermodynamics and elastic instability. Indiana U. Math. J. 23, 309–335 (1973)CrossRefzbMATHGoogle Scholar
  66. 66.
    O.W. Dillon, A nonlinear thermoelasticity theory. J. Mech. Phys. Solids 10, 123–131 (1962)MathSciNetCrossRefzbMATHGoogle Scholar
  67. 67.
    M. Slemrod, Global existence, uniqueness, and asymptotic stability of classical smooth solutions in one-dimensional non-linear thermoelasticity. Arch. Ration. Mech. Ann. 76, 97–133 (1981)CrossRefzbMATHGoogle Scholar
  68. 68.
    A.D. Kerr, Thermal buckling of straight tracks: fundamentals, analyses and preventive measures. Tech Rep FRA/ORD-78-49 (1978)Google Scholar
  69. 69.
    A. Kish, Fundamentals of CWR rail stress management. in TRB 90th Annual Meeting (Washington, DC, 2011)Google Scholar
  70. 70.
    C. Nucera, R. Phillips, F. Lanza di Scalea, M. Fateh, G. Carr, RAIL-NT system for the in-situ measurement of neutral temperature in CWR: Results from laboratory and field test. J. Transp. Res. Board 2374, 154–161 (2013)CrossRefGoogle Scholar
  71. 71.
    H. Ledbetter, Thermal-expansion and elastic-constants. Int. J. Thermophys. 12, 637–642 (1991)CrossRefGoogle Scholar
  72. 72.
    D.M. Egle, D.E. Bray, Measurement of acoustoelastic and 3rd-order elastic-constants for rail steel. J. Acoust. Soc. Am. 60, 741–744 (1976)CrossRefGoogle Scholar
  73. 73.
    J.H. Cantrell, in Fundamentals and Applications of Nonlinear Ultrasonic Nondestructive Evaluation, ed. By T. Kundu. Ultrasonic Nondestructive Evaluation: Engineering and Biological Material Characterization (CRC Press, Boca Raton, 2004), pp. 363–433Google Scholar
  74. 74.
    J.H. Cantrell, Quantitative assessment of fatigue damage accumulation in wavy slip metals from acoustic harmonic generation. Philos. Mag. 86, 1539–1554 (2006)CrossRefGoogle Scholar
  75. 75.
    J.H. Cantrell, W.T. Yost, Nonlinear ultrasonic characterization of fatigue microstructures. Int. J. Fatigue 23, S487–S490 (2001)CrossRefGoogle Scholar
  76. 76.
    R.J.D. Tilley, Understanding Solids: The Science of Materials (Wiley, Chichester, West Sussex, England and Hoboken, 2004)CrossRefGoogle Scholar
  77. 77.
    G. Mie, Zur kinetischen theorie der einatomigen körper. Ann. Phys. 316, 657–697 (1903)CrossRefzbMATHGoogle Scholar
  78. 78.
    C. Nucera, F. Lanza di Scalea, Nonlinear wave propagation in constrained solids subjected to thermal loads. J. Sound Vibr. 333, 541–554 (2014)CrossRefGoogle Scholar
  79. 79.
    J. Lennard-Jones, On the determination of molecular fields I – from the variation of the viscosity of a gas with temperature. Proc. R. Soc. Lond. 106, 441–462 (1924)CrossRefGoogle Scholar
  80. 80.
    J.E. Lennard-Jones, On the determination of molecular fields II – from the equation of state of a gas. Proc. R. Soc. Lond. 106, 463–477 (1924)CrossRefGoogle Scholar
  81. 81.
    J.E. Lennard-Jones, On the determination of molecular fields III – from crystal measurements and kinetic theory data. Proc. R. Soc. Lond. 106, 709–718 (1924)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Francesco Lanza di Scalea
    • 1
    Email author
  • Ankit Srivastava
    • 2
  • Claudio Nucera
    • 3
  1. 1.Department of Structural EngineeringUniversity of California San DiegoLa JollaUSA
  2. 2.Illinois Institute of TechnologyChicagoUSA
  3. 3.Barclays Investment BankLondonUK

Personalised recommendations