Cement-Based Material Characterization Using Nonlinear Single-Impact Resonant Acoustic Spectroscopy (NSIRAS)

  • J. N. Eiras
  • T. Kundu
  • J. S. Popovics
  • J. Payá


The durability of infrastructure materials, such as concrete, has direct impact on society because the productivity of many industries and safety of human beings depend on infrastructure condition, and further because maintenance of the infrastructure can represent a significant portion of a government’s budget. Thus the enhancement of concrete durability and improvement of infrastructure condition monitoring are significant concerns to the scientific community. The resonant frequency method has been traditionally used to assess the mechanical condition of concrete. Resonance frequencies of a solid body depend on test sample mass and dimensions, elastic properties, and boundary conditions. Resonance frequencies have been used to determine engineering properties such as the elastic moduli and material damping. The method is useful to assess the performance of materials within accelerated degradation durability test procedures, and to inspect quality of the products during manufacturing processes (pass/fail tests). Different testing standards and recommendations prescribe test configurations, and specific tests are recommended for different materials. A basic resonant frequency test requires a forced vibration system to set up mechanical resonances, and some system to sense the frequency content from the resonant vibration signals. For concrete-like materials, these specifications are given by ASTM C215 [1], wherein an impulsive impact event is applied to the test sample to excite the resonant frequencies and a small sensor is mounted on the surface of the test sample. From the impulsive impact vibration signals thus obtained, two standard parameters are usually derived: (1) the dynamic modulus, which depends on sample dimensions, mass, and the resonant frequency peak (f), and (2) the attenuation or damping capacity of the material. Figure 12.1a, b illustrates typical signals obtained from a single-impact vibration test, where the spectral (frequency domain) signal is computed from the time signal using a Fourier transform algorithm. The continuous reduction of the vibration signal amplitude with time during the signal “ring-down” is seen in the time domain signal. The resonant frequency and damping characteristics are extracted from the spectral signal in the region around the resonant frequency peak. The damping capacity of the material is determined from the quality factor (Q) (or inverse attenuation), which is defined as the ratio between the resonant frequency peak (f) and the bandwidth frequencies corresponding to a 50% reduction of vibration energy in the power frequency spectrum for a given vibration mode [2]. Meaningful application of the ASTM C215 test is found within other standard durability test methods [3, 4].



This work has been supported by the Spanish Administration (MINECO: BIA 2010-19933 and BIA2014-55311-C2-1-P, projects) and FEDER funds. Jesús N. Eiras wants to acknowledge the financial support provided by the Ministerio de Economía y Competitividad (MINECO Spain, grant BES-2011-044624).


  1. 1.
    ASTM C215-14, Standard Test Method for Fundamental Transverse, Longitudinal, and Torsional Resonant Frequencies of Concrete. West Conshohocken, PA, 2014Google Scholar
  2. 2.
    V.M. Malhotra, V. Sivasundaram, in Resonant Frequency Methods. Handbook on Nondestructive Testing of Concrete (CRC Press, Boca Raton, 2004). pp. 167–188CrossRefGoogle Scholar
  3. 3.
    ASTM-C666/C666M-15, Standard Test Method for Resistance of Concrete to Rapid Freezing and Thawing. West Conshohocken, PA, 2015Google Scholar
  4. 4.
    ASTM C1012/C1012M-15, Standard Test Method for Length Change of Hydraulic-Cement Mortars Exposed to a Sulfate Solution. West Conshohocken, PA, 2015Google Scholar
  5. 5.
    J. Chen, A.R. Jayapalan, J. Kim, K.E. Kurtis, L.J. Jacobs, Rapid evaluation of alkali–silica reactivity of aggregates using a nonlinear resonance spectroscopy technique. Cem. Concr. Res. 40(6), 914–923 (2010)CrossRefGoogle Scholar
  6. 6.
    P.B. Nagy, Fatigue damage assesstment by nonlinear ultrasonic materials characterization. Ultrasonics 36, 375–381 (1998)CrossRefGoogle Scholar
  7. 7.
    C. Payan, V. Garnier, J. Moysan, P.A. Johnson, Applying nonlinear resonant ultrasound spectroscopy to improving thermal damage assessment in concrete. J. Acoust. Soc. Am. 121(4), EL125–EL130 (2007)CrossRefGoogle Scholar
  8. 8.
    K. Van Den Abeele, A. Sutin, J. Carmeliet, P.a. Johnson, Micro-damage diagnostics using nonlinear elastic wave spectroscopy (NEWS). NDT E Int. 34(4), 239–248 (2001)CrossRefGoogle Scholar
  9. 9.
    V. Gusev, V. Tournat, B. Castagnède, in Non-Destructive Evaluation of Micro-Inhomogenous Solids by Nonlinear Acoustic Methods. Materials and Acoustics Handbook (Wiley, Hoboken, 2010), pp. 473–503Google Scholar
  10. 10.
    Y. Zheng, R.G. Maev, I.Y. Solodov, Nonlinear acoustic applications for material characterization: a review. Can. J. Phys. 77, 927–967 (1999)CrossRefGoogle Scholar
  11. 11.
    V.E. Nazarov, L.A. Ostrovsky, I.A. Soustova, A.M. Sutin, Nonlinear acoustics of micro-inhomogeneous media. Phys. Earth Planet. Inter. 50(1), 65–73 (1988)CrossRefGoogle Scholar
  12. 12.
    L.A. Ostrovsky, P.A. Johnson, Dynamic nonlinear elasticity in geomaterials. Riv. Nuovo Cimento 24(7), 1–46 (2001)Google Scholar
  13. 13.
    K. Van Den Abeele, J. De Visscher, Damage assessment in reinforced concrete using spectral and temporal nonlinear vibration techniques. Cem. Concr. Res. 30(9), 1453–1464 (2000)CrossRefGoogle Scholar
  14. 14.
    U. Dahlén, N. Ryden, A. Jakobsson, U. Dahlen, N. Ryden, A. Jakobsson, Damage identification in concrete using impact non-linear reverberation spectroscopy. NDT E Int. 75(1), 15–25 (2015)CrossRefGoogle Scholar
  15. 15.
    J.N. Eiras, J. Monzó, J. Payá, T. Kundu, J.S. Popovics, Non-classical nonlinear feature extraction from standard resonance vibration data for damage detection. J. Acoust. Soc. Am. 135(2), EL82–EL87 (2014)CrossRefGoogle Scholar
  16. 16.
    S.A. Neild, M.S. Williams, P.D. McFadden, Nonlinear vibration characteristics of damaged concrete beams. J. Struct. Eng. 129(2), 260–268 (2003)CrossRefGoogle Scholar
  17. 17.
    R.A. Guyer, K.R. McCall, K. Van Den Abeele, Slow elastic dynamics in a resonant bar of rock. Geophys. Res. Lett. 25(10), 1585–1588 (1998)CrossRefGoogle Scholar
  18. 18.
    V.E. Nazarov, A.V. Radostin, L.A. Ostrovsky, I.A. Soustova, Wave processes in media with hysteretic nonlinearity: part 2. Acoust. Phys. 49(4), 444–448 (2003)CrossRefGoogle Scholar
  19. 19.
    V.E. Nazarov, A.V. Radostin, Nonlinear Acoustic Waves in Micro-Inhomogeneous Solids (Wiley, Hoboken, 2015)Google Scholar
  20. 20.
    R.A. Guyer, P.A. Johnson, Nonlinear Mesoscopic Elasticity (Wiley, Wienhiem, 2009)CrossRefGoogle Scholar
  21. 21.
    C. Pecorari, D.A. Mendelsohn, Forced nonlinear vibrations of a one-dimensional bar with arbitrary distributions of hysteretic damage. J. Nondestruct. Eval. 33(2), 239–251 (2014)CrossRefGoogle Scholar
  22. 22.
    R.A. Guyer, P.A. Johnson, Nonlinear mesoscopic elasticity: evidence for a new class of materials. Phys. Today 52(4), 30–36 (1999)CrossRefGoogle Scholar
  23. 23.
    P.A. Johnson, A. Sutin, Slow dynamics and anomalous nonlinear fast dynamics in diverse solids. J. Acoust. Soc. Am. 117(1), 124–130 (2005)CrossRefGoogle Scholar
  24. 24.
    D. Pasqualini, K. Heitmann, J.A. TenCate, S. Habib, D. Higdon, P.A. Johnson, Nonequilibrium and nonlinear dynamics in Berea and Fontainebleau sandstones: low-strain regime. J. Geophys. Res. 112(B1), B01204 (2007)CrossRefGoogle Scholar
  25. 25.
    T.A. Read, The internal friction of single metal crystals. Phys. Rev. 58, 371–380 (1940)CrossRefGoogle Scholar
  26. 26.
    J.A. TenCate, E. Smith, R.A. Guyer, Universal slow dynamics in granular solids. Phys. Rev. Lett. 85(5), 1020–1023 (2000)CrossRefGoogle Scholar
  27. 27.
    K.J. Leśnicki, J.-Y. Kim, K.E. Kurtis, L.J. Jacobs, Assessment of alkali–silica reaction damage through quantification of concrete nonlinearity. Mater. Struct. 46(3), 497–509 (2013)CrossRefGoogle Scholar
  28. 28.
    F. Bouchaala, C. Payan, V. Garnier, J.P.P. Balayssac, Carbonation assessment in concrete by nonlinear ultrasound. Cem. Concr. Res. 41(5), 557–559 (2011)CrossRefGoogle Scholar
  29. 29.
    J.N. Eiras, T. Kundu, J.S. Popovics, J. Monzó, M.V. Borrachero, J. Payá, Effect of carbonation on the linear and nonlinear dynamic properties of cement-based materials. Opt. Eng. 55(1), 11004 (2015)CrossRefGoogle Scholar
  30. 30.
    Q.A. Vu, V. Garnier, J.F. Chaix, C. Payan, M. Lott, J.N. Eiras, Concrete cover characterisation using dynamic acousto-elastic testing and rayleigh waves. Constr. Build. Mater. 114, 87–97 (2016)CrossRefGoogle Scholar
  31. 31.
    J.N. Eiras, T. Kundu, M. Bonilla, J. Payá, Nondestructive monitoring of ageing of alkali resistant glass fiber reinforced cement (GRC). J. Nondestruct. Eval. 32(3), 300–314 (2013)CrossRefGoogle Scholar
  32. 32.
    J.S. Walker, A Primer on Wavelets and Their Scientific Applications (Chapman & Hall/CRC, London, 1999)CrossRefGoogle Scholar
  33. 33.
    S. Nisar, O.U. Khan, M. Tariq, An efficient adaptive window size selection method for improving spectrogram visualization. Comput. Intell. Neurosci. 2016, 1–13 (2016)CrossRefGoogle Scholar
  34. 34.
    K. Van Den Abeele, C. Campos-Pozuelo, J. Gallego-Juarez, F. Windels, B. Bollen, Analysis of the Nonlinear Reverberation of Titanium Alloys Fatigued at High Amplitude Ultrasonic Vibration. Proceedings Forum Acustica Sevilla, 2002Google Scholar
  35. 35.
    B. Van Damme, K. Van Den Abeele, The application of nonlinear reverberation spectroscopy for the detection of localized fatigue damage. J. Nondestruct. Eval. 33(2), 263–268 (2014)Google Scholar
  36. 36.
    K. Van Den Abeele, P.-Y. Le Bas, B. Van Damme, T. Katkowski, Quantification of material nonlinearity in relation to microdamage density using nonlinear reverberation spectroscopy: experimental and theoretical study. J. Acoust. Soc. Am. 126(3), 963–972 (2009)CrossRefGoogle Scholar
  37. 37.
    J.N. Eiras, Studies on nonlinear mechanical wave behavior to characterize cement based materials and its durability, Dissertation, Universitat Politècnica de València, 2016Google Scholar
  38. 38.
    F.V. Hunt, Stress and strain limits on the attainable velocity in mechanical vibration. J. Acoust. Soc. Am. 32(7), 1123–1128 (1960)CrossRefGoogle Scholar
  39. 39.
    C. Payan, T.J. Ulrich, P.Y. Le Bas, T. Saleh, M. Guimaraes, Quantitative linear and nonlinear resonance inspection techniques and analysis for material characterization: application to concrete thermal damage. J. Acoust. Soc. Am. 136(2), 537 (2014)CrossRefGoogle Scholar
  40. 40.
    P.A. Johnson, in Nonequilibrium Nonlinear-Dynamics in Solids: State of the Art State of the Art in Nonequilibrium Dynamics. ed. By P.P. Delsanto. Universality of Nonclassical Nonlinearity (Springer, New York, 2006), pp. 49–69Google Scholar
  41. 41.
    P.A. Johnson, B. Zinszner, P.N.J. Rasolofosaon, F. Cohen-Tenoudji, K. Van Den Abeele, Dynamic measurements of the nonlinear elastic parameter α in rock under varying conditions. J. Geophys. Res. 109(B2), B02202 (2004)CrossRefGoogle Scholar
  42. 42.
    U. Polimeno, M. Meo, Understanding the effect of boundary conditions on damage identification process when using non-linear elastic wave spectroscopy methods. Int. J. Non-Linear Mech. 43(3), 187–193 (2008)CrossRefGoogle Scholar
  43. 43.
    P. Duffour, M. Morbidini, P. Cawley, Comparison between a type of vibro-acoustic modulation and damping measurement as NDT techniques. NDT E Int. 39(2), 123–131 (2006)CrossRefGoogle Scholar
  44. 44.
    M.C. Remillieux, R.A. Guyer, C. Payan, T.J. Ulrich, Decoupling nonclassical nonlinear behavior of elastic wave types. Phys. Rev. Lett. 116(11), 115501 (2016)CrossRefGoogle Scholar
  45. 45.
    K.E. Claytor, J.R. Koby, J.A. TenCate, Limitations of Preisach theory: elastic aftereffect, congruence, and end point memory. Geophys. Res. Lett. 36(6), L06304 (2009)CrossRefGoogle Scholar
  46. 46.
    V. Gusev, V. Tournat, in Thermally Induced Rate-Dependence of Hysteresis in Nonclassical Nonlinear Acoustics. Universality of Nonclassical Nonlinearity (Springer, New York, 2006), pp. 337–348CrossRefGoogle Scholar
  47. 47.
    L. Meirovitch, Fundamentals of Vibrations (McGraw Hill, New York, 2001)Google Scholar
  48. 48.
    R. Jones, Non Destructive Testing of Concrete (Cambridge University Press, London, 1962)Google Scholar
  49. 49.
    A. Migliori, J.L. Sarrao, Resonant Ultrasound Spectroscopy: Applications to Physics, Materials Measurements, and Nondestructive Evaluation (Wiley, New York, 1997)Google Scholar
  50. 50.
    T.G. Chondros, A.D. Dimarogonas, J. Yao, Vibration of a beam with breathing crack. J. Sound Vib. 239(1), 57–67 (2001)CrossRefGoogle Scholar
  51. 51.
    E. Douka, L.J. Hadjileontiadis, Time–frequency analysis of the free vibration response of a beam with a breathing crack. NDT E Int. 38(1), 3–10 (2005)CrossRefGoogle Scholar
  52. 52.
    ASTM E2001-13, Standard Guide for Resonant Ultrasound Spectroscopy for Defect Detection in Both Metallic and Non-Metallic. West Conshohocken, PA, 2013.Google Scholar
  53. 53.
    K. Flynn, M. Radovic, Evaluation of defects in materials using resonant ultrasound spectroscopy. J. Mater. Sci. 46(8), 2548–2556 (2011)CrossRefGoogle Scholar
  54. 54.
    K. Van Den Abeele, J. Carmeliet, P.A. Johnson, B. Zinszner, Influence of water saturation on the nonlinear elastic mesoscopic response in earth materials and the implications to the mechanism of nonlinearity. J. Geophys. Res. 107, 1–11 (2002)Google Scholar
  55. 55.
    L.O. Yaman, N. Hearn, H.M.I. Aktan, I.O. Yaman, Active and non-active porosity in concrete part I: experimental evidence. Mater. Struct. 35(2), 102–109 (2002)CrossRefGoogle Scholar
  56. 56.
    J.N. Eiras, J.S. Popovics, M.V. Borrachero, J. Monzó, J. Payá, The effects of moisture and micro-structural modifications in drying mortars on vibration-based NDT methods. Constr. Build. Mater. 94, 565–571 (2015)CrossRefGoogle Scholar
  57. 57.
    G.W. Scherer, Theory of drying. J. Am. Ceram. Soc. 14(1), 3–14 (1990)CrossRefGoogle Scholar
  58. 58.
    C. Payan, V. Garnier, J. Moysan, Effect of water saturation and porosity on the nonlinear elastic response of concrete. Cem. Concr. Res. 40(3), 473–476 (2010)CrossRefGoogle Scholar
  59. 59.
    J.B. Watchman, W.E. Tefet, D.G. Lam, C.S. Apstein, Exponential temperature dependence of young’s modulus for several oxides. Phys. Rev. 122(6), 1754 (1961)CrossRefGoogle Scholar
  60. 60.
    T.J. Ulrich, T.W. Darling, Observation of Anomalous elastic behavior in rock at low temperatures. Geophys. Res. Lett. 28(11), 2293–2296 (2001)CrossRefGoogle Scholar
  61. 61.
    J.A. TenCate, T.J. Shankland, Slow dynamics in the nonlinear elastic response of Berea sandstone. Geophys. Res. Lett. 23(21), 3019–3022 (1996)CrossRefGoogle Scholar
  62. 62.
    J. Somaratna, Evaluation of Linear and Nonlinear Vibration Methods to Characterize Induced Microstructural Damage in Portland Cement-Based Materials, Dissertation, University of Illinois at Urbana-Champaign, 2014Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • J. N. Eiras
    • 1
  • T. Kundu
    • 2
  • J. S. Popovics
    • 3
  • J. Payá
    • 4
  1. 1.Aix Marseille Univ, CNRS, Centrale Marseille, LMAMarseilleFrance
  2. 2.Department of Civil Engineering and Engineering Mechanics, Aerospace and Mechanical EngineeringUniversity of ArizonaTucsonUSA
  3. 3.Department of Civil and Environmental EngineeringUniversity of Illinois at Urbana-ChampaignUrbanaUSA
  4. 4.Instituto de Ciencia y Tecnología del Hormigón (ICITECH), Universitat Politècnica de ValènciaValenciaSpain

Personalised recommendations