Advertisement

The Kinematics of the Three Compartments of the Native and Partially Implanted Knee

  • Francesco Zambianchi
  • Shinichiro Nakamura
  • Francesco Fiacchi
  • Shuichi Matsuda
  • Fabio Catani
Chapter

Abstract

The biomechanics of the human knee joint has been a subject of speculation since the past century. Various theories as to how the tibia, the femur, and the patella articulate with respect to each other have developed as a result of researches involving cadavers and living subjects. The importance of the insight in replaced-knee kinematics in loading and unloading conditions has been demonstrated with the relation between joint motion and postoperative knee functioning. Different methods have been applied in order to study the functional kinematics of the human knee, taking into account how muscle activation, movement, and loading condition in different activities affect joint motion and bones’ relative positions. Differences have been reported relative to the kinematic behavior of the native, osteoarthritic, and implanted knee, in particular for what concern patterns of anterior-posterior displacement of the femoral condyles relative to the tibia and axial rotation. In the present chapter, the different approaches for knee kinematics investigation have been analyzed and described in the native joint, in knees with medial osteoarthritis and with unicompartmental arthroplasty.

Keywords

Kinematics Native knee Osteoarthritis UKA 

References

  1. 1.
    Weber WE, Weber E. Mechanics of the human walking apparatus. Translated by Maquet P and Furlong R Berlin etc: Springer 75; 1992 (Original Publication: Mechanik der menschlichen Gehwerkzeuge. Gottingen, 1836).Google Scholar
  2. 2.
    Zuppinger H. Die aktive flexion im unbelasteten Kniegelenk: Züricher Habil Schr. Bergmann: Wiesbaden; 1994. p. 703–63.Google Scholar
  3. 3.
    Frankel VH, Burstein AH, Brooks DB. Biomechanics as determined by analysis of the instant centers of motion. J Bone Joint Surg. 1971;53-A:945–77.CrossRefGoogle Scholar
  4. 4.
    Grood ES, Suntay WJ. A joint coordinate system for the clinical description of three-dimensional motions: application to the knee. J Biomech Eng. 1983;105:136–44.CrossRefGoogle Scholar
  5. 5.
    Iwaki H, Pinskerova V, Freeman MAR. Tibiofemoral movement 1: the shapes and relative movements of the femur and the tibia in the unloaded cadaver knee. J Bone Joint Surg. 2000;82-B:1189–95.CrossRefGoogle Scholar
  6. 6.
    Eckhoff DE, Hogan C, DiMatteo L, et al. Difference between the epicondylar and cylindrical axis of the knee. Clin Orthop. 2007;461:238–44.PubMedGoogle Scholar
  7. 7.
    Banks SA, Hodge WA. Accurate measurement of three-dimensional knee replacement kinematics using single-plane fluoroscopy. IEEE Trans Biomed Eng. 1996;43:638–49.CrossRefGoogle Scholar
  8. 8.
    Komistek RD, Dennis DA, Mahfouz M. In vivo fluoroscopic analysis of the normal human knee. Clin Orthop Relat Res. 2003;410:69–81.CrossRefGoogle Scholar
  9. 9.
    Moro-Oka T, Hamai S, Miura H, Shimoto T, Higaki H, Fregly BJ, Iwamoto Y, Banks SA. Dynamic activity dependence of in vivo normal knee kinematics. J Orthop Res. 2008;26:428–34.CrossRefGoogle Scholar
  10. 10.
    Karrholm J, Brandsson S, Freeman MAR. Tibiofemoral movement: changes of axial rotation caused by forced rotation at the weight bearing knee studied by RSA. J Bone Joint Surg. 2000;82-B:1201–3.CrossRefGoogle Scholar
  11. 11.
    Nakagawa S, Kadoya Y, Todo S, Kobayashi A, Sakamoto H, Freeman MAR, Yamano Y. Tibiofemoral movement: full flexion in the living knee studied by MRI. J Bone Joint Surg. 2000;82-B:1199–200.CrossRefGoogle Scholar
  12. 12.
    Johal P, Williams A, Wragg P, Hunt D, Gedroyc W. Tibio-femoral movement in the living knee. A study of weight bearing and non-weight bearing knee kinematics using ‘interventional’ MRI. J Biomech. 2005;38:269–76.CrossRefGoogle Scholar
  13. 13.
    Moro-Oka TA, Hamai S, Miura H, Shimoto T, Higaki H, Fregly BJ, Iwamoto Y, Banks SA. Can magnetic resonance imaging-derived bone models be used for accurate motion measurement with single-plane three-dimensional shape registration? J Orthop Res. 2007;25(7):867–72.CrossRefGoogle Scholar
  14. 14.
    Williams A, Phillips C. Functional in vivo kinematics analysis of the normal knee. Chapter 5. Total knee arthroplasty – a guide to get better performance. Springer: Berlin/Heidelberg; 2005.Google Scholar
  15. 15.
    Yamaguchi S, Gamada K, Sasho T, Kato H, Sonoda M, Banks SA. In vivo kinematics of anterior cruciate ligament deficient knees during pivot and squat activities. Clin Biomech (Bristol, Avon). 2009;24(1):71–6.  https://doi.org/10.1016/j.clinbiomech.2008.08.007.CrossRefGoogle Scholar
  16. 16.
    Hamai S, Moro-Oka TA, Dunbar NJ, Miura H, Iwamoto Y, Banks SA. In vivo healthy knee kinematics during dynamic full flexion. Biomed Res Int. 2013:717546.  https://doi.org/10.1155/2013/717546.CrossRefGoogle Scholar
  17. 17.
    Hamai S, Moro-Oka T, Miura H, Shimoto T, Higaki H, Fregly BJ, et al. Knee kinematics in medial osteoarthritis during in vivo weight-bearing activities. J Orthop Res. 2009;27:1555–61.CrossRefGoogle Scholar
  18. 18.
    Fiacchi F, Zambianchi F, Digennaro V, Ricchiuto I, Mugnai R, Catani F. In vivo kinematics of medial unicompartmental osteoarthritic knees during activities of daily living. Knee. 2014;21(Suppl 1):S10–4.  https://doi.org/10.1016/S0968-0160(14)50003-8.CrossRefPubMedGoogle Scholar
  19. 19.
    Matsui Y, Kadoya Y, Uehara K, Kobayashi A, Takaoka K. Rotational deformity in varus osteoarthritis of the knee: analysis with computed tomography. Clin Orthop. 2005;433:147–51.CrossRefGoogle Scholar
  20. 20.
    Nagao N, Tachibana T, Mizuno K. The rotational angle in osteoarthritic knees. Int Orthop. 1998;22:282–7.CrossRefGoogle Scholar
  21. 21.
    Matsuki K, Matsuki KO, Kenmoku T, Yamaguchi S, Sasho T, Banks SA. In vivo kinematics of early-stage osteoarthritic knees during pivot and squat activities. Gait Posture. 2017;58:214–9.  https://doi.org/10.1016/j.gaitpost.2017.07.116.CrossRefPubMedGoogle Scholar
  22. 22.
    Moschella D, Blasi A, Leardini A, Ensini A, Catani F. Wear patterns on tibial plateau from varus osteoarthritic knees. Clin Biomech. 2006;21:152–8.CrossRefGoogle Scholar
  23. 23.
    Lu T, Tsai T, Kuo M, Hsu HC, Chen HL. In vivo three-dimensional kinematics of the normal knee during active extension under unloaded and loaded conditions using single-plane fluoroscopy. Med Eng Phys. 2008;30:1004–12.CrossRefGoogle Scholar
  24. 24.
    Dennis D, Mahfouz M, Komistek R, Hoff W. In vivo determination of normal and anterior cruciate ligament-deficient knee kinematics. J Biomech. 2005;38:241–53.CrossRefGoogle Scholar
  25. 25.
    Jamali AA, Scott RD, Rubash HE, Freiberg AA. Unicompartmental knee arthroplasty: past, present, and future. Am J Orthop. 2009;38(1):17–23.PubMedGoogle Scholar
  26. 26.
    Heyse TJ, El-Zayat BF, De Corte R, Chevalier Y, Scheys L, Innocenti B, Fuchs-Winkelmann S, Labey L. UKA closely preserves natural knee kinematics in vitro. Knee Surg Sports Traumatol Arthrosc. 2014;22(8):1902–10.CrossRefGoogle Scholar
  27. 27.
    Deschamps G, Lapeyre B. Rupture of the anterior cruciate ligament: a frequently unrecognized cause of failure of unicompartmental knee prostheses. Rev Chir Orthop Reparatrice Appar Mot. 1987;73(7):544–51.PubMedGoogle Scholar
  28. 28.
    Hernigou P, Deschamps G. Posterior slope of the tibial implant and the outcome of unicompartmental knee arthroplasty. J Bone Joint Surg. 2004;86-A(3):506–11.CrossRefGoogle Scholar
  29. 29.
    Argenson JN, Komistek RD, Aubaniac JM, et al. In vivo determination of knee kinematics for subjects implanted with a unicompartmental arthroplasty. J Arthroplast. 2002;17(8):1049–54.CrossRefGoogle Scholar
  30. 30.
    Nishio Y, Onodera T, Kasahara Y, Takahashi D, Iwasaki N, Majima T. Intraoperative medial pivot affects deep knee flexion angle and patient-reported outcomes after total knee arthroplasty. J Arthroplast. 2014;29(4):702–6.CrossRefGoogle Scholar
  31. 31.
    Kia M, Warth LC, Lipman JD, et al. Fixed-bearing medial unicompartmental knee arthroplasty restores neither the medial pivoting behavior nor the ligament forces of the intact knee in passive flexion. J Orthop Res. 2017;  https://doi.org/10.1002/jor.23838.CrossRefGoogle Scholar
  32. 32.
    Mochizuki T, Sato T, Tanifuji O, et al. In vivo pre- and postoperative three-dimensional knee kinematics in unicompartmental knee arthroplasty. J Orthop Sci. 2013;18(1):54–60.CrossRefGoogle Scholar
  33. 33.
    Watanabe T, Abbasi AZ, Conditt MA, Christopher J, Kreuzer S, Otto JK, Banks SA. In vivo kinematics of a robot-assisted uni- and multi-compartmental knee arthroplasty. J Orthop Sci. 2014;19(4):552–7.  https://doi.org/10.1007/s00776-014-0578-3.CrossRefPubMedGoogle Scholar
  34. 34.
    Grant AL, Doma KD, Hazratwala K. Determination of the accuracy of navigated kinematic unicompartmental knee arthroplasty: a 2-year follow-up. J Arthroplast. 2017;32(5):1443–52.  https://doi.org/10.1016/j.arth.2016.11.036.CrossRefGoogle Scholar
  35. 35.
    Zhang Z, Zhu W, Zhu L, Du Y. Superior alignment but no difference in clinical outcome after minimally invasive computer-assisted unicompartmental knee arthroplasty (MICA-UKA). Knee Surg Sports Traumatol Arthrosc. 2016;24(11):3419–24.CrossRefGoogle Scholar
  36. 36.
    Casino D, Martelli S, Zaffagnini S, Lopomo N, Iacono F, Bignozzi S, Visani A, Marcacci M. Knee stability before and after total and unicondylar knee replacement: in vivo kinematic evaluation utilizing navigation. J Orthop Res. 2009;27(2):202–7.CrossRefGoogle Scholar
  37. 37.
    Burton A, Williams S, Brockett CL, Fisher J. In vitro comparison of fixed- and mobile meniscal-bearing unicondylar knee arthroplasties: effect of design, kinematics, and condylar liftoff. J Arthroplast. 2012;27(8):1452–9.  https://doi.org/10.1016/j.arth.2012.02.011.CrossRefGoogle Scholar
  38. 38.
    Small SR, Berend ME, Rogge RD, Archer DB, Kingman AL, Ritter MA. Tibial loading after UKA: evaluation of tibial slope, resection depth, medial shift and component rotation. J Arthroplast. 2013;28(9 Suppl):179–83.  https://doi.org/10.1016/j.arth.2013.01.004.CrossRefGoogle Scholar
  39. 39.
    Ettinger M, Zoch JM, Becher C, Hurschler C, Stukenborg-Colsman C, Claassen L, Ostermeier S, Calliess T. In vitro kinematics of fixed versus mobile bearing in unicondylar knee arthroplasty. Arch Orthop Trauma Surg. 2015;135(6):871–7.  https://doi.org/10.1007/s00402-015-2214-x.CrossRefPubMedGoogle Scholar
  40. 40.
    Cassidy KA, Tucker SM, Rajak Y, Kia M, Imhauser CW, Westrich GH, Heyse TJ. Kinematics of passive flexion following balanced and overstuffed fixed bearing unicondylar knee arthroplasty. Knee. 2015;22(6):542–6.  https://doi.org/10.1016/j.knee.2015.07.014.CrossRefPubMedGoogle Scholar
  41. 41.
    Heyse TJ, Slane J, Peersman G, Dworschak P, Fuchs-Winkelmann S, Scheys L. Balancing mobile-bearing unicondylar knee arthroplasty in vitro. Knee Surg Sports Traumatol Arthrosc. 2017;25(12):3733–40.  https://doi.org/10.1007/s00167-016-4241-8.CrossRefPubMedGoogle Scholar
  42. 42.
    Peersman G, Slane J, Vuylsteke P, Fuchs-Winkelmann S, Dworschak P, Heyse T, Scheys L. Kinematics of mobile-bearing unicompartmental knee arthroplasty compared to native: results from an in vitro study. Arch Orthop Trauma Surg. 2017;137(11):1557–63.  https://doi.org/10.1007/s00402-017-2794-8.CrossRefPubMedGoogle Scholar
  43. 43.
    Kwon OR, Kang KT, Son J, Kwon SK, Jo SB, Suh DS, Choi YJ, Kim HJ, Koh YG. Biomechanical comparison of fixed- and mobile-bearing for unicomparmental knee arthroplasty using finite element analysis. J Orthop Res. 2014;32(2):338–45.  https://doi.org/10.1002/jor.22499.CrossRefPubMedGoogle Scholar
  44. 44.
    Kwon OR, Kang KT, Son J, Suh DS, Baek C, Koh YG. Importance of joint line preservation in unicompartmental knee arthroplasty: finite element analysis. J Orthop Res. 2017;35(2):347–52.  https://doi.org/10.1002/jor.23279.CrossRefPubMedGoogle Scholar
  45. 45.
    Innocenti B, Pianigiani S, Ramundo G, Thienpont E. Biomechanical effects of different varus and valgus alignments in medial unicompartmental knee arthroplasty. J Arthroplast. 2016;31(12):2685–91.  https://doi.org/10.1016/j.arth.2016.07.006.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Francesco Zambianchi
    • 1
  • Shinichiro Nakamura
    • 2
  • Francesco Fiacchi
    • 1
  • Shuichi Matsuda
    • 2
  • Fabio Catani
    • 1
  1. 1.Department of Orthopaedic Surgery, Azienda Ospedaliero-Universitaria di ModenaUniversity of Modena and Reggio-EmiliaModenaItaly
  2. 2.Department of Orthopaedic SurgeryUniversity of KyotoKyotoJapan

Personalised recommendations