Advertisement

Anaesthesia for Interventional Neuroradiology

  • Luciana Mascia
  • Simone Cappio Borlino
  • Mario Mezzapesa
  • Anna Teresa Mazzeo
Chapter

Abstract

Interventional neuroradiology (INR) or endovascular neurosurgery is an emerging specialty being a hybrid of traditional neurosurgery and neuroradiology. This specialty is focused on the management of neurovascular diseases and other neurosurgical conditions delivering therapeutic drugs and devices through endovascular access. INR always requires sedation or anaesthesia named non-operating room anaesthesia (NORA). Although interventional procedures cause much less tissue trespass than surgical operations, anaesthetists must deal with some specific challenges: interventional suite personnel are often not used to cooperate with anaesthetists and therefore may not be aware of their needs; anaesthetists may not be fully trained to deal with NORA challenges, and they may not be familiar to many new interventional techniques. This manuscript focuses on the peri-procedural anaesthesiologic management of patients undergoing INR procedures. After a rapid introduction to the field of application of INR, anaesthetic issues are described, sorting them as general considerations applicable to all INR procedures and specific considerations inherent to the three most important and frequent INR procedures: aneurysm coiling, arteriovenous malformations (AVMs) and fistulae (AVFs) embolization and acute ischaemic stroke thrombectomy.

Keywords

NORA Neuroradiology Neuroanaesthesia Neuroteam Aneurysm AVMs Stroke Sedation Haemodynamic 

Notes

Acknowledgement

The authors thank Prof Italia Larosa for her helpful criticisms.

References

  1. 1.
    Varma MK, Price K, Jayakrishnan V, Manickam B, Kessell G. Anaesthetic considerations for interventional neuroradiology. Br J Anaesth. 2007;99(1):75–85.  https://doi.org/10.1093/bja/aem122.CrossRefPubMedGoogle Scholar
  2. 2.
    Boggs SD, Barnett SR, Urman RD. The future of nonoperating room anesthesia in the 21st century. Curr Opin Anaesthesiol. 2017;30:644–51.  https://doi.org/10.1097/ACO.0000000000000528.CrossRefPubMedGoogle Scholar
  3. 3.
    Dabu-Bondoc S. Non operating room anesthesia. Curr Opin Anaesthesiol. 2017;30(6):639–43.  https://doi.org/10.1097/ACO.0000000000000524.CrossRefPubMedGoogle Scholar
  4. 4.
    Guercio JR, Nimjee SM, James ML, McDonagh DL. Anesthesia for interventional neuroradiology. Int Anesthesiol Clin. 2015;53(1):87–106.  https://doi.org/10.1053/sa.2000.17788.CrossRefPubMedGoogle Scholar
  5. 5.
    Lee CZ, Young WL. Anesthesia for endovascular neurosurgery and interventional neuroradiology. Anesthesiol Clin. 2012;30:127–47.  https://doi.org/10.1016/j.anclin.2012.05.009.CrossRefPubMedGoogle Scholar
  6. 6.
    Perritt E, Mahalingam G. The principles of anaesthesia for neuroradiology: anaesthesia tutorial of the week 308. Anaesthesia tutorial of the week. London: WFSA; 2014. p. 1–11.Google Scholar
  7. 7.
    American Society of Anesthesiologists Committee on Standards and Practice Parameters. Statement On Nonoperating Room Anesthetizing Locations. 2013:1–2.Google Scholar
  8. 8.
    Patel S, Reddy U. Anaesthesia for interventional neuroradiology. Br J Anaesth Educ. 2016;16(12):147–52.  https://doi.org/10.1093/bjaed/mkv032.CrossRefGoogle Scholar
  9. 9.
    American Society of Anesthesiologists Committee on Standards and Practice Parameters. Standards for basic anesthetic monitoring. 2015:1–4.Google Scholar
  10. 10.
    Talke PO, Sharma D, Heyer EJ, Bergese SD, Blackham KA, Stevens RD. Republished: Society for neuroscience in anesthesiology and critical care expert consensus statement: anesthetic management of endovascular treatment for acute ischemic stroke*. Stroke. 2014;45(8):138–51.  https://doi.org/10.1161/STROKEAHA.113.003412.CrossRefGoogle Scholar
  11. 11.
    Montanini S, Martinelli G, Torri G, et al. Recommendations on perioperative normothermia. Working Group on Perioperative Hypothermia, Italian Society for Anesthesia, Analgesia, Resuscitation, and Intensive Care. Minerva Anestesiol. 2001;67:157–8.PubMedGoogle Scholar
  12. 12.
    Branston NM, Symon L, Crockard HA, Pasztor E. Relationship between the cortical evoked potential and local cortical blood flow following acute middle cerebral artery occlusion in the baboon. Exp Neurol. 1974;45(2):195–208.  https://doi.org/10.1016/0014-4886(74)90112-5.CrossRefPubMedGoogle Scholar
  13. 13.
    Phillips JLH, Chalouhi N, Jabbour P, et al. Somatosensory evoked potential changes in neuroendovascular procedures: incidence and association with clinical outcome in 873 patients. Neurosurgery. 2014;75(5):560–7.  https://doi.org/10.1227/NEU.0000000000000510.CrossRefPubMedGoogle Scholar
  14. 14.
    Sahaya K, Pandey AS, Thompson BG, Bush BR, Minecan DN. Intraoperative monitoring for intracranial aneurysms: the Michigan experience. J Clin Neurophysiol. 2014;31(6):563–7.  https://doi.org/10.1097/WNP.0000000000000093.CrossRefPubMedGoogle Scholar
  15. 15.
    Horton TG, Barnes M, Johnson S, Kalapos PC, Link A, Cockroft KM. Feasibility and efficacy of transcranial motor-evoked potential monitoring in neuroendovascular surgery. Am J Neuroradiol. 2012;33(9):1825–31.  https://doi.org/10.3174/ajnr.A3017.CrossRefPubMedGoogle Scholar
  16. 16.
    Liu AY, Lopez JR, Do HM, Steinberg GK, Cockroft K, Marks MP. Neurophysiological monitoring in the endovascular therapy of aneurysms. Am J Neuroradiol. 2003;24(8):1520–7.PubMedGoogle Scholar
  17. 17.
    Castioni CA, Amadori A, Bilotta F, et al. Italian COnsensus in Neuroradiological Anesthesia (ICONA). Minerva Anestesiol. 2017;83(9):956–71.  https://doi.org/10.23736/S0375-9393.17.11753-0.CrossRefPubMedGoogle Scholar
  18. 18.
    Thal GD, Szabo MD, Lopez-Bresnahan M, Crosby G. Exacerbation or unmasking of focal neurologic deficits by sedatives. Anesthesiology. 1996;85:21–5.CrossRefGoogle Scholar
  19. 19.
    Lazar RM, Fitzsimmons BF, Marshall RS, Mohr JP, Berman MF. Midazolam challenge reinduces neurological deficits after transient ischemic attack. Stroke. 2003;34:794–6.  https://doi.org/10.1161/01.STR.0000056540.04159.F3.CrossRefPubMedGoogle Scholar
  20. 20.
    Kramer AH, Roberts DJ, Zygun DA. Optimal glycemic control in neurocritical care patients: a systematic review and meta-analysis. Crit Care. 2012;16(5):R203.  https://doi.org/10.1186/cc11812.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Saver JL. Time is brain - quantified. Stroke. 2006;37(1):263–6.  https://doi.org/10.1161/01.STR.0000196957.55928.ab.CrossRefPubMedGoogle Scholar
  22. 22.
    Brinjikji W, Murad MH, Rabinstein AA, Cloft HJ, Lanzino G, Kallmes DF. Conscious sedation versus general anesthesia during endovascular acute ischemic stroke treatment : a systematic review and meta-analysis. AJNR Am J Neuroradiol. 2015;36:525–9.  https://doi.org/10.3174/ajnr.A4159.CrossRefPubMedGoogle Scholar
  23. 23.
    Schönenberger S, Uhlmann L, Hacke W, et al. Effect of conscious sedation vs general anesthesia on early neurological improvement among patients with ischemic stroke undergoing endovascular thrombectomy. JAMA. 2016;316(19):1986.  https://doi.org/10.1001/jama.2016.16623.CrossRefPubMedGoogle Scholar
  24. 24.
    Hendén PL, Rentzos A, Karlsson JE, et al. General anesthesia versus conscious sedation for endovascular treatment of acute ischemic stroke: the AnStroke trial (anesthesia during stroke). Stroke. 2017;48(6):1601–7.  https://doi.org/10.1161/STROKEAHA.117.016554.CrossRefGoogle Scholar
  25. 25.
    Abou-Chebl A, Lin R, Shazam Hussain M, et al. Conscious sedation versus general anesthesia during endovascular therapy for acute anterior circulation stroke: preliminary results from a retrospective, multicenter study. Stroke. 2010;41(6):1175–9.  https://doi.org/10.1161/STROKEAHA.109.574129.CrossRefPubMedGoogle Scholar
  26. 26.
    Abou-Chebl A, Zaidat OO, Castonguay AC, et al. North American SOLITAIRE stent-retriever acute stroke registry: choice of anesthesia and outcomes. Stroke. 2014;45(5):1396–401.  https://doi.org/10.1161/STROKEAHA.113.003698.CrossRefPubMedGoogle Scholar
  27. 27.
    Jumaa MA, Zhang F, Ruiz-ares G, et al. Comparison of safety and clinical and radiographic outcomes in endovascular acute stroke therapy for proximal middle cerebral artery occlusion with intubation and general anesthesia versus the nonintubated state. Stroke. 2010;41:1180–5.  https://doi.org/10.1161/STROKEAHA.109.574194.CrossRefPubMedGoogle Scholar
  28. 28.
    Davis MJ, Menon BK, Baghirzada LB, et al. Anesthetic management and outcome in patients during endovascular therapy for acute stroke. Anesthesiology. 2012;116(2):396–405.  https://doi.org/10.1097/SA.0b013e31827f3137.CrossRefPubMedGoogle Scholar
  29. 29.
    Nichols C, Carrozzella J, Yeatts S, Tomsick T, Broderick J, Khatri P. Is peri-procedural sedation during acute stroke therapy associated with poorer functional outcomes? J Neurointerv Surg. 2010;2(1):67–70.  https://doi.org/10.1136/jnis.2009.001768.Is.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Brekenfeld C, Mattle HP, Schroth G. General is better than local anesthesia during endovascular procedures. Stroke. 2010;41(11):2716–7.  https://doi.org/10.1161/STROKEAHA.110.594622.CrossRefPubMedGoogle Scholar
  31. 31.
    Mundiyanapurath S, Schönenberger S, Rosales ML, et al. Circulatory and respiratory parameters during acute endovascular stroke therapy in conscious sedation or general anesthesia. J Stroke Cerebrovasc Dis. 2015;24(6):1244–9.  https://doi.org/10.1016/j.jstrokecerebrovasdis.2015.01.025.CrossRefPubMedGoogle Scholar
  32. 32.
    Kapila A, Glass PSA, Jacobs JR, et al. Measured context-sensitive half-times of remifentanil and alfentanil. Anesthesiology. 1995;83:968–75.CrossRefGoogle Scholar
  33. 33.
    Castagnini HE, van Eijs F, Salevsky FC, Nathanson MH. Sevoflurane for interventional neuroradiology procedures is associated with more rapid early recovery than propofol. Can J Anesth. 2004;51(5):486–91.  https://doi.org/10.1007/BF03018313.CrossRefPubMedGoogle Scholar
  34. 34.
    Boisseau N, Madany M, Staccini P, et al. Comparison of the effects of sevoflurane and propofol on cortical somatosensory evoked potentials. Br J Anaesth. 2002;88(6):785–9.  https://doi.org/10.1093/bja/88.6.785.CrossRefPubMedGoogle Scholar
  35. 35.
    Malcharek MJ, Loeffler S, Schiefer D, et al. Transcranial motor evoked potentials during anesthesia with desflurane versus propofol - a prospective randomized trial. Clin Neurophysiol. 2015;126(9):1825–32.  https://doi.org/10.1016/j.clinph.2014.11.025.CrossRefPubMedGoogle Scholar
  36. 36.
    Dorairaj I, Hancock S. Anaesthesia for interventional neuroradiology. Contin Educ Anaesth Crit Care Pain. 2008;8:86–9.  https://doi.org/10.1016/j.mpaic.2016.09.003.CrossRefGoogle Scholar
  37. 37.
    Schulman S, Bijsterveld NR. Anticoagulants and their reversal. Transfus Med Rev. 2007;21(1):37–48.  https://doi.org/10.1016/j.tmrv.2006.08.002.CrossRefPubMedGoogle Scholar
  38. 38.
    Gordon JL, Fabian TC, Lee MD, Dugdale M. Anticoagulant and antiplatelet medications encountered in emergency surgery patients: a review of reversal strategies. J Trauma Acute Care Surg. 2013;75(3):475–86.  https://doi.org/10.1097/TA.0b013e3182a07391.CrossRefPubMedGoogle Scholar
  39. 39.
    Goldstein JN, Merrero M, Masrur S, et al. Management of thrombolysis-associated symptomatic intracerebral hemorrhage. Arch Neurol. 2010;67(8):965–9.  https://doi.org/10.1016/j.jacc.2007.01.076.White.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Molyneux AJ, Kerr RS, Birks J, et al. Risk of recurrent subarachnoid haemorrhage, death, or dependence and standardised mortality ratios after clipping or coiling of an intracranial aneurysm in the International Subarachnoid Aneurysm Trial (ISAT): long-term follow-up. Lancet Neurol. 2009;8(5):427–33.  https://doi.org/10.1016/S1474-4422(09)70080-8.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Nguyen H, Zaroff JG. Neurogenic stunned myocardium. Curr Neurol Neurosci Rep. 2009;9(6):486–91.  https://doi.org/10.1007/s11910-009-0071-0.CrossRefPubMedGoogle Scholar
  42. 42.
    Zaroff JG, Leong J, Kim H, et al. Cardiovascular predictors of long-term outcomes after non-traumatic subarachnoid hemorrhage. Neurocrit Care. 2012;17(3):374–81.  https://doi.org/10.1007/s12028-011-9592-x.CrossRefPubMedGoogle Scholar
  43. 43.
    Stevens RD, Nyquist PA. The systemic implications of aneurysmal subarachnoid hemorrhage. J Neurol Sci. 2007;261(1-2):143–56.  https://doi.org/10.1016/j.jns.2007.04.047.CrossRefPubMedGoogle Scholar
  44. 44.
    Allen GS, Preziosi TJ, Battye R, et al. Cerebral arterial spasm - a controlled trial of nimodipine in patients with subarachnoid hemorrhage. N Engl J Med. 1983;308:619–24.CrossRefGoogle Scholar
  45. 45.
    Pickard JD, Murray GD, Illingworth R, et al. Effect of oral nimodipine on cerebral infarction and outcome after subarachnoid haemorrhage: British aneurysm nimodipine trial. Br Med J. 1989;298:636–42.  https://doi.org/10.1136/bmj.298.6674.636.CrossRefGoogle Scholar
  46. 46.
    Diringer MN, Bleck TP, Hemphill JC, et al. Critical care management of patients following aneurysmal subarachnoid hemorrhage: recommendations from the neurocritical care society’s multidisciplinary consensus conference. Neurocrit Care. 2011;15:211–40.  https://doi.org/10.1007/s12028-011-9605-9.CrossRefPubMedGoogle Scholar
  47. 47.
    Hashimoto T, Young WL, Aagaard BD, Joshi S, Ostapkovich ND, Pile-Spellman J. Adenosine-induced ventricular asystole to induce transient profound systemic hypotension in patients undergoing endovascular therapy. Dose-response characteristics. Anesthesiology. 2000;93:998–1001.  https://doi.org/10.1097/00000542-200010000-00021.CrossRefGoogle Scholar
  48. 48.
    Spetzler RF, Wilson CB, Weinstein P, Mehdorn M, Townsend J, Telles D. Normal perfusion pressure breakthrough theory. Clin Neurosurg. 1978;25(1):651–72.CrossRefGoogle Scholar
  49. 49.
    Rangel-Castilla L, Rajah GB, Shakir HJ, et al. Acute stroke endovascular treatment: tips and tricks. J Cardiovasc Surg (Torino). 2016;57(6):758.Google Scholar
  50. 50.
    Kupersmith MJ, Vargas ME, Yashar A, et al. Occipital arteriovenous malformations: visual disturbances and presentation. Neurology. 1996;46(4):953–7.  https://doi.org/10.1212/WNL.46.4.953.CrossRefPubMedGoogle Scholar
  51. 51.
    Jauch EC, Saver JL, Adams HP, et al. Guidelines for the early management of patients with acute ischemic stroke - a guideline for healthcare professionals from the American Heart Association/America Stroke Assosiation. Stroke. 2013;44:870–947.  https://doi.org/10.1161/STR.0b013e318284056a.CrossRefPubMedGoogle Scholar
  52. 52.
    Welch TL, Pasternak JJ. The anesthetic management of interventional procedures for acute ischemic stroke. Curr Anesthesiol Rep. 2016;6(3):223–32.  https://doi.org/10.1007/s40140-016-0166-5.CrossRefGoogle Scholar
  53. 53.
    Froehler MT, Fifi JT, Majid A, Bhatt A, Ouyang M, McDonagh DL. Anesthesia for endovascular treatment of acute ischemic stroke. Neurology. 2012;79(13, Suppl 1):S167.  https://doi.org/10.1212/WNL.0b013e31826959c2.CrossRefPubMedGoogle Scholar
  54. 54.
    McDonald JS, Brinjikji W, Rabinstein AA, Cloft HJ, Lanzino G, Kallmes DF. Conscious sedation versus general anaesthesia during mechanical thrombectomy for stroke: a propensity score analysis. J Neurointerv Surg. 2015;7:789–94.  https://doi.org/10.1136/neurintsurg-2014-011373.CrossRefPubMedGoogle Scholar
  55. 55.
    Ouyang F, Chen Y, Zhao Y, Dang G, Liang J, Zeng J. Selection of patients and anesthetic types for endovascular treatment in acute ischemic stroke: a meta-analysis of randomized controlled trials. PLoS One. 2016;11(3):1–18.  https://doi.org/10.1371/journal.pone.0151210.CrossRefGoogle Scholar
  56. 56.
    Van Den Berg LA, Koelman DLH, Berkhemer OA, et al. Type of anesthesia and differences in clinical outcome after intra-arterial treatment for ischemic stroke. Stroke. 2015;46(5):1257–62.  https://doi.org/10.1161/STROKEAHA.115.008699.CrossRefPubMedGoogle Scholar
  57. 57.
    Wang A, Stellfox M, Moy F, et al. General anesthesia during endovascular stroke therapy does not negatively impact outcome. World Neurosurg. 2017;99:638–43.  https://doi.org/10.1016/j.wneu.2016.12.064.CrossRefPubMedGoogle Scholar
  58. 58.
    Wang H, Naghavi M, Allen C, et al. Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet. 2016;388(10053):1459–544.  https://doi.org/10.1016/S0140-6736(16)31012-1.CrossRefGoogle Scholar
  59. 59.
    Rai A, Boo S, Dominico J, Roberts T, Carpenter J. E-026 Time and pressure - possible reasons behind worse outcomes for GETA patients undergoing stroke interventions. J Neurointerv Surg. 2014;6:A49.CrossRefGoogle Scholar
  60. 60.
    Simonsen CZ, Yoo AJ, Sørensen LH, et al. Effect of general anesthesia and conscious sedation during endovascular therapy on infarct growth and clinical outcomes in acute ischemic stroke. JAMA Neurol. 2018;75:470.  https://doi.org/10.1001/jamaneurol.2017.4474.CrossRefPubMedGoogle Scholar
  61. 61.
    Bekelis K, Missios S, Mackenzie TA, Tjoumakaris S, Jabbour P. Anesthesia technique and outcomes of mechanical thrombectomy in patients with acute ischemic stroke. Stroke. 2017;48(2):361–6.  https://doi.org/10.1161/STROKEAHA.116.015343.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Powers WJ, Derdeyn CP, Biller J, et al. 2015 American Heart Association/American stroke association focused update of the 2013 guidelines for the early management of patients with acute ischemic stroke regarding endovascular treatment: a guideline for healthcare professionals from the American. Stroke. 2015;46(10):3020–35.  https://doi.org/10.1161/STR.0000000000000074.CrossRefPubMedGoogle Scholar
  63. 63.
    Leonardi-Bee J, Bath PMW, Phillips SJ, Sandercock PAG. Blood pressure and clinical outcomes in the International Stroke Trial. Stroke. 2002;33(5):1315–20.  https://doi.org/10.1161/01.STR.0000014509.11540.66.CrossRefPubMedGoogle Scholar
  64. 64.
    Robinson TG, Potter JF, Ford GA, et al. Effects of antihypertensive treatment after acute stroke in the Continue Or Stop post-Stroke Antihypertensives Collaborative Study (COSSACS): a prospective, randomised, open, blinded-endpoint trial. Lancet Neurol. 2010;9(8):767–75.  https://doi.org/10.1016/S1474-4422(10)70163-0.CrossRefPubMedGoogle Scholar
  65. 65.
    Sandset EC, Bath PMW, Boysen G, et al. The angiotensin-receptor blocker candesartan for treatment of acute stroke (SCAST): a randomised, placebo-controlled, double-blind trial. Lancet. 2011;377(9767):741–50.  https://doi.org/10.1016/S0140-6736(11)60104-9.CrossRefPubMedGoogle Scholar
  66. 66.
    He J, Zhang Y, Xu T, et al. Effects of immediate blood pressure reduction on death and major disability in patients with acute ischemic stroke. The catis randomized clinical trial. JAMA. 2014;311(5):479–89.  https://doi.org/10.1001/jama.2013.282543.CrossRefPubMedGoogle Scholar
  67. 67.
    Phipps MS, Desai RA, Wira C, Bravata DM. Epidemiology and outcomes of fever burden among patients with acute ischemic stroke. Stroke. 2011;42(12):3357–62.  https://doi.org/10.1161/STROKEAHA.111.621425.CrossRefPubMedGoogle Scholar
  68. 68.
    Wan YH, Nie C, Wang HL, Huang CY. Therapeutic hypothermia (different depths, durations, and rewarming speeds) for acute ischemic stroke: a meta-analysis. J Stroke Cerebrovasc Dis. 2014;23(10):2736–47.  https://doi.org/10.1016/j.jstrokecerebrovasdis.2014.06.017.CrossRefPubMedGoogle Scholar
  69. 69.
    Ntaios G, Dziedzic T, Michel P, et al. European Stroke Organisation (ESO) guidelines for the management of temperature in patients with acute ischemic stroke. Int J Stroke. 2015;10(6):941–9.  https://doi.org/10.1111/ijs.12579.CrossRefPubMedGoogle Scholar
  70. 70.
    RCoA. Guidelines for the Provision of Anaesthesia Services (GPAS) Guidance on the Provision of Services for Neuroanaesthesia and Neurocritical Care 2016. London: RCoA; 2016. p. 1–9.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Luciana Mascia
    • 1
    • 2
  • Simone Cappio Borlino
    • 3
  • Mario Mezzapesa
    • 1
  • Anna Teresa Mazzeo
    • 3
  1. 1.Anestesiologia e Rianimazione, Dipartimento di Scienze e Biotecnologie Medico ChirurgicheUniversità di Roma La SapienzaRomaItaly
  2. 2.Anestesiologia e Rianimazione, Dipartimento di Scienze e Biotecnologie Medico ChirurgicheUniversità di Roma La SapienzaLatinaItaly
  3. 3.Anestesiologia e Rianimazione, Dipartimento di Scienze Chirurgiche, Azienda Ospedaliera Città della Salute e della Scienza di TorinoUniversità di TorinoTorinoItaly

Personalised recommendations