Cardiopulmonary Interactions in Adults with Congenital Heart Disease

  • Ronald A. BronickiEmail author
  • Andrew N. Redington
Part of the Congenital Heart Disease in Adolescents and Adults book series (CHDAA)


The population of adults with congenital heart disease (CHD) has increased dramatically over the past few decades, with the number of adults with CHD now surpassing the pediatric population. Adult CHD (ACHD) encompasses a broad range of presentations, with some patients diagnosed for the first time in adulthood. The majority of patients however have undergone a palliative repair during childhood and now are dealing with sequela and/or residual disease years to decades later. All of which may be compounded by acquired cardiovascular disease. In this review, we describe the physiologic underpinnings of the interaction between the respiratory and cardiovascular systems and their clinical impact in ACHD. We will review the physiologic underpinnings of cardiopulmonary interactions and the effects of respiration on cardiovascular function, the impact of respiration on cardiovascular function in adult patients with congenital and acquired heart disease, the effects of respiratory disease on cardiovascular function, and the impact of cardiovascular disease on respiratory function.


Adult congenital heart disease Cardiopulmonary interactions Compliance Transmural pressure Systemic venous return Ventricular preload Ventricular afterload Ventricular interaction Cardiac output Systemic oxygen delivery 


  1. 1.
    Guyton AC, Jones CE, Coleman TG. Peripheral vascular contribution to cardiac output regulation—the concept of “venous return”. In: Guyton AC, Jones CE, Coleman TG, editors. Circulatory physiology: cardiac output and its regulation. 2nd ed. Philadelphia, PA: WB Saunders; 1973. p. 173–87.Google Scholar
  2. 2.
    Funk DJ, Jacobsohn E, Kumar A. The role of venous return in critical illness and shock—part I: physiology. Crit Care Med. 2013;41:255–62.PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Gelman S. Venous function and central venous pressure. Anesthesiology. 2008;108:735–48.PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Herndon CW, Sagawa K. Combined effects of aortic and right atrial pressures on aortic flow. Am J Phys. 1969;217:65–72.Google Scholar
  5. 5.
    Landis EM, Hortenstine JC. Functional significance of venous blood pressure. Am Physiol Soc. 1950;30:1–32.Google Scholar
  6. 6.
    Hatanakah T, Potts JT. Invariance of the resistance to venous return to carotid sinus baroreflex control. Am J Phys. 1996;271(3 Pt 2):H1022–30.Google Scholar
  7. 7.
    Caldini P, Permutt S, Waddell JA, et al. Effect of epinephrine on pressure, flow, and volume relationships in the systemic circulation in dogs. Circ Res. 1974;34:606–23.PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Greene AS, Shoukas AA. Changes in canine cardiac function and venous return curves by the carotid baroreflex. Am J Phys. 1986;251:H288–96.Google Scholar
  9. 9.
    Guyton AC, Lindsey AW, Abernathy B, et al. Mechanism of the increased venous return and cardiac output caused by epinephrine. Am J Phys. 1958;192:126–30.Google Scholar
  10. 10.
    Guyton AC, Richardson TQ. Effect of hematocrit on venous return. Circ Res. 1961;9:157–64.PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Rothe CF. Mean circulatory filling pressure: its meaning and measurement. J Appl Physiol. 1993;74:499–509.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Guyton AC, Jones CE, Coleman TG. Mean circulatory pressure, mean systemic pressure, and mean pulmonary pressure and their effects on venous return. In: Guyton AC, Jones CE, Coleman TG, editors. Circulatory physiology: cardiac output and its regulation. 2nd ed. Philadelphia, PA: WB Saunders; 1973. p. 205–21.Google Scholar
  13. 13.
    Drees JA, Rothe CF. Reflex venoconstriction and capacity vessel pressure-volume relationships in dogs. Circ Res. 1974;XXXIV:360–73.CrossRefGoogle Scholar
  14. 14.
    O’Brien LJ. Negative diastolic pressure in the isolated hypothermic dog heart. Circ Res. 1960;10:188–96.Google Scholar
  15. 15.
    Nakatani S, Beppu S, Nagata S, et al. Diastolic suction in the human ventricle: observation during balloon mitral valvuloplasty with a single balloon. Am Heart J. 1994;127:143–7.PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Yellin EL, Hori M, Yoran H, et al. Left ventricular relaxation in the filling and nonfilling intact canine heart. Am J Phys. 1986;250:H620–9.Google Scholar
  17. 17.
    Takata M, Wise RA, Robotham JL. Effects of abdominal pressure on venous return: abdominal vascular zone conditions. J Appl Physiol. 1990;69:1961–72.PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Takata M, Robotham JL. Effects of inspiratory diaphragmatic descent on inferior vena caval venous return. J Appl Physiol. 1992;72:597–607.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Lloyd TC Jr. Effect of inspiration on inferior vena caval blood flow in dogs. J Appl Phyisol. 1983;55:1701–8.Google Scholar
  20. 20.
    Karim F, Hainsworth R. Responses of abdominal vascular capacitance to stimulation of splanchnic nerves. Am J Phys. 1976;231:434–40.Google Scholar
  21. 21.
    Guyton AC, Adkins LH. Quantitative aspects of the collapse factor in relation to venous return. Am J Phys. 1954;177:523–7.Google Scholar
  22. 22.
    Bark H, LeRoith D, Myska M, et al. Elevations in plasma ADH levels during PEEP ventilation in the dog: mechanisms involved. Am J Phys. 1980;239:E474–80.Google Scholar
  23. 23.
    Scharf SM, Ingram RH Jr. Influence of abdominal pressure and sympathetic vasoconstriction on the cardiovascular response to positive end-expiratory pressure. Am Rev Respir Dis. 1977;116:661–70.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Pinsky M. Determinants of pulmonary arterial flow variation during respiration. J Appl Physiol. 1984;56:1237–45.PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Cabrera MR, Nakamura GE, Montague DA, et al. Effect of airway pressure on pericardial pressure. Am Rev Respir Dis. 1989;140:659 667.CrossRefGoogle Scholar
  26. 26.
    Novak R, Matuschak GM, Pinsky MR. Effect of positive-pressure ventilatory frequency on regional pleural pressure. J Appl Physiol. 1988;65:1314–23.PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Fewell JE, Abendschein DR, Carlson J, et al. Mechanism of decreased right and left ventricular end-diastolic volumes during continuous positive-pressure ventilation in dogs. Circ Res. 1980;47:467–72.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    O’Quin R, Marini JJ. Pulmonary artery occlusion pressure: clinical physiology, measurement, and interpretation. Am Rev Respir Dis. 1983;128:319–26.PubMedPubMedCentralGoogle Scholar
  29. 29.
    Takata M, Robotham JL. Ventricular external constraint by the lung and pericardium during positive end-expiratory pressure. Am Rev Respir Dis. 1991;143:872–5.PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Bronicki RA, Baden HP. Pathophysiology of right ventricular failure in pulmonary hypertension. Pediatr Crit Care Med. 2010;11(Suppl):S15–22.PubMedCrossRefGoogle Scholar
  31. 31.
    Peters J, Kindred MK, Robotham JL. Transient analysis of cardiopulmonary interactions. I. Diastolic events. J Appl Physiol. 1988;64:1506–17.PubMedCrossRefGoogle Scholar
  32. 32.
    Buckberg G, Hoffman JIE, Nanda NC. Ventricular torsion and untwisting: further insights into mechanics and timing interdependence: a viewpoint. Echocardiography. 2011;28:782–804.PubMedCrossRefGoogle Scholar
  33. 33.
    van Dalen BM, Kauer F, Vletter WB, et al. Influence of cardiac shape on left ventricular twist. J Appl Physiol. 2010;108:146–51.PubMedCrossRefGoogle Scholar
  34. 34.
    Brookes C, Ravn H, White P, et al. Acute right ventricular dilatation in response to ischemia significantly impairs left ventricular systolic performance. Circulation. 1999;100:761–7.PubMedCrossRefGoogle Scholar
  35. 35.
    Santamore WP, Gray L. Significant left ventricular contributions to right ventricular systolic function. Chest. 1995;107:1134–45.PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Belenkie I, Horne SG, Dani R, et al. Effects of aortic constriction during experimental acute right ventricular pressure loading. Circulation. 1995;92:546–54.PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Ricciardi MJ, Bossone E, Bach DS, et al. Echocardiographic predictors of an adverse response to a nifedipine trial in primary pulmonary hypertension: diminished left ventricular size and leftward ventricular septal bowing. Chest. 1999;116:1218–23.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Apitz C, Honjo O, Humpl T, et al. Biventricular structural and functional responses to aortic constriction in a rabbit model of chronic right ventricular pressure overload. J Thorac Cardiovasc Surg. 2012;144:1494–501.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Apitz C, Honjo O, Friedberg MK, et al. Beneficial effects of vasopressors on right ventricular function in experimental acute right ventricular failure in a rabbit model. Thorac Cardiovasc Surg. 2012;60:17–25.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Page RD, Harringer W, Hodakowski GT, et al. Determinants of maximal right ventricular function. J Heart Lung Transplant. 1992;11:90–8.PubMedGoogle Scholar
  41. 41.
    Peters J, Kindred MK, Robotham JL. Transient analysis of cardiopulmonary interaction. II. Systolic events. J Appl Physiol. 1988;64:1518–26.PubMedCrossRefGoogle Scholar
  42. 42.
    Fessler HE, Brower RG, Wise RA, et al. Mechanism of reduced LV afterload by systolic and diastolic positive pleural pressure. J Appl Physiol. 1988;65:1244–50.PubMedCrossRefGoogle Scholar
  43. 43.
    Pinsky MR, Matuschak GM, Bernardi L, et al. Hemodynamic effects of cardiac cycle-specific increases in intrathoracic pressure. J Appl Physiol. 1986;60:604–12.PubMedCrossRefGoogle Scholar
  44. 44.
    Pinsky MR, Marquez J, Martin D, et al. Ventricular assist by cardiac cycle-specific increases in intrathoracic pressure. Chest. 1987;91:709–15.PubMedCrossRefGoogle Scholar
  45. 45.
    Viellard-Baron A, Chergui K, Augarde R, et al. Cyclic changes in arterial pulse during respiratory support revisited by Doppler echocardiography. Am J Respir Crit Care Med. 2003;168:671–6.CrossRefGoogle Scholar
  46. 46.
    Massumi RA, Mason DT, Vera Z, et al. Reversed pulsus paradoxus. New Engl J Med. 1973;289:1272–5.PubMedCrossRefGoogle Scholar
  47. 47.
    He J, Ogden LG, Bazzano LA, et al. Risk factors for congestive heart failure in US men and women: NHANES I epidemiologic follow-up study. Arch Intern Med. 2001;161:996–1002.PubMedCrossRefGoogle Scholar
  48. 48.
    Giannakoulas G, Dimopoulos K, Engel R, et al. Burden of coronary artery disease in adults with congenital heart disease and its relation to congenital and traditional heart risk factors. Am J Cardiol. 2009;103:1445–50.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Grace MP, Greenbaum DM. Cardiac performance in response to PEEP in patients with cardiac dysfunction. Crit Care Med. 1982;10:358–60.PubMedCrossRefGoogle Scholar
  50. 50.
    Bradley TD, Holloway RM, McLauglin PR, et al. Cardiac output response to continuous positive airway pressure in congestive heart failure. Am Rev Respir Dis. 1982;145:377–82.CrossRefGoogle Scholar
  51. 51.
    Scharf SM. Ventilatory support in cardiac failure. Curr Opin Crit Care. 1997;3:71–7.CrossRefGoogle Scholar
  52. 52.
    Rasanen J, Vaisanen IT, Heikkila J, et al. Acute myocardial infarction complicated by left ventricular dysfunction and respiratory failure. The effects of continuous positive airway pressure. Chest. 1985;87:158–62.PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Scharf SM, Chen L, Rao PS. Effects of continuous positive airway pressure on cardiac output and plasma norepinephrine in sedated pigs. J Crit Care. 1996;11:57–64.PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Genovese J, Moskowitz M, Tarasiuk A, et al. Effects of continuous positive airway pressure on cardiac output in normal and hypervolemic unanesthetized pigs. Am J Respir Crit Care Med. 1994;150:752–8.PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Kennedy SK, Weintraub RM, Skillman JJ. Cardiorespiratory and sympathoadrenal responses during weaning from controlled ventilation. Surgery. 1977;82:233–40.PubMedPubMedCentralGoogle Scholar
  56. 56.
    Rasanen J, Nikki P, Heikkila J. Acute myocardial infarction complicated by respiratory failure. Chest. 1984;85:21–8.PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Scharf SM, Bianco JA, Tow DE, et al. The effects of large negative intrathoracic pressure on left ventricular function in patients with coronary artery disease. Circulation. 1981;63:871–5.PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Jubran A, Mathru M, Dries D, et al. Continuous recordings of mixed venous oxygen saturation during weaning from mechanical ventilation and the ramifications thereof. Am J Respir Crit Care Med. 1998;158:1763–9.PubMedCrossRefGoogle Scholar
  59. 59.
    Winck J, Azevedo LF, Costa-Pereira A, et al. Efficacy and safety of non-invasive ventilation in the treatment of acute cardiogenic pulmonary edema—a systematic review and meta-analysis. Crit Care. 2006;10:1–18.CrossRefGoogle Scholar
  60. 60.
    Massip J, Roque M, Sanchez B, et al. Noninvasive ventilation in acute cardiogenic pulmonary edema. JAMA. 2005;294:3124–30.CrossRefGoogle Scholar
  61. 61.
    Haruki N, Takeuchi M, Kaku K, et al. Comparison of acute and chronic impact of adaptive servo-ventilation on left chamber geometry and function in patients with chronic heart failure. Eur J Heart Fail. 2011;10:1140–6.CrossRefGoogle Scholar
  62. 62.
    Cullen S, Shore D, Redington A. Characterization of right ventricular diastolic performance after complete repair of tetralogy of Fallot. Circulation. 1995;91:1782–9.PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Appleton CP, Hatle LK, Popp RL. Demonstration of restrictive ventricular physiology by Doppler echocardiography. J Am Coll Cardiol. 1988;11:757–68.PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Shekerdemian LS, Bush A, Shore DF, et al. Cardiorespiratory responses to negative pressure ventilation after tetralogy of Fallot repair: a hemodynamic tool for patients with a low-output state. J Am Coll Cardiol. 1999;33:549–55.PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Kushwaha SS, Fallon JT, Fuster V. Restrictive cardiomyopathy. N Engl J Med. 1997;336:267–76.PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Fifer MA, Vlahakes GJ. Management of symptoms in hypertrophic cardiomyopathy. Circulation. 2008;117:429–39.PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Gotsman MS, Lewis BS. Left ventricular volumes and compliance in hypertrophic cardiomyopathy. Chest. 1974;66:498–505.PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Thomson HL, Morris-Thurgood J, Atherton J, et al. Reflex responses of venous capacitance vessels in patients with hypertrophic cardiomyopathy. Clin Sci. 1998;94:339–46.PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Braunwald E, Oldham H Jr, Ross J, et al. The circulatory response of patients with idiopathic hypertrophic subaortic stenosis to nitroglycerin and to the Valsalva maneuver. Circulation. 1964;29:422–31.PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Braunwald E, Ebert PA. Hemodynamic alterations in idiopathic hypertrophic subaortic stenosis induced by sympathomimetic drugs. Am J Cardiol. 1962;10:489–95.PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Mace L, Dervanian P, Bourriez A, et al. Changes in venous return parameters associated with univentricular Fontan circulations. Am J Physiol Heart Circ Physiol. 2000;279:H2335–43.PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Myers CD, Ballman K, Riegle LE, et al. Mechanisms of systemic adaptation to univentricular Fontan conversion. J Thorac Cardiovasc Surg. 2010;140:850–6.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Kelley JR, Mack GW, Fahey JT. Diminished venous vascular capacitance in patients with univentricular hearts after the Fontan operation. Am J Cardiol. 1995;76:158–63.PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Krishnan US, Taneja I, Gewitz M, et al. Peripheral vascular adaptation and orthostatic tolerance in Fontan physiology. Circulation. 2009;120:1775–83.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Fogel MA, Weinberg PM, Hoydu A, et al. The nature of low in the systemic venous pathway measured by magnetic resonance blood tagging in patients having the Fontan operation. J Thorac Cardiovasc Surg. 1997;114:1032–41.PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Qureshi S, Richheimer R, McKay R, et al. Doppler echocardiographic evaluation of pulmonary artery flow after modified Fontan operation: importance of atrial contractions. Br Heart J. 1990;64:272–6.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Penny DJ, Rigby ML, Redington AN. Abnormal patterns of intraventricular flow and diastolic filling after the Fontan operation: evidence for incoordinate ventricular wall motion. Br Heart J. 1991;66:375–8.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Cheung YF, Penny DJ, Redington AN. Serial assessment of left ventricular diastolic function after Fontan procedure. Heart. 2000;83:420–4.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Rychik J, Goldberg DJ. Late consequences of the Fontan operation. Circulation. 2014;130:1525–8.PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Gewillig M, Brown SC. The Fontan circulation after 45 years: update in physiology. Heart. 2016;102:1081–6.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Anderson PAW, Sleeper LA, Mahony L, et al. Contemporary outcomes after the Fontan procedure: a pediatric heart network multicenter study. J Am Coll Cardiol. 2008;52:85–98.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Lloyd TR, Rydberg A, Ludomirsky A, et al. Late fenestration closure in the hypoplastic left heart syndrome: comparison of hemodynamic changes. Am Heart J. 1998;136:302–6.PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Grosse-Wortmann L, Dragulescu A, Drolet C, et al. Determinants and clinical significance of flow via the fenestration in the Fontan pathway: a multimodality study. Int J Cardiol. 2013;168:811–7.PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Kuhn MA, Jarmakani JM, Laks H, et al. Effect of late postoperative atrial septal defect closure on hemodynamic function in patients with a lateral tunnel Fontan procedure. J Am Coll Cardiol. 1995;26:259–65.PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Hsia T-Y, Khambadkone S, Redington AN, et al. Effects of respiration and gravity on infradiaphragmatic venous flow in normal and Fontan patients. Circulation. 2000;102(Suppl III):III-148–53.Google Scholar
  86. 86.
    Shekerdemian LS, Bush A, Shore DF, et al. Cardiopulmonary interactions after the Fontan operation. Augmentation of cardiac output using negative pressure ventilation. Circulation. 1997;96:3934–42.PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Jayakumar KA, Addonizio LJ, Kichuk-Chrisant MR, et al. Cardiac transplantation after the Fontan or Glenn procedure. J Am Coll Cardiol. 2004;44:2065–72.PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Griffiths ER, Kaza AK, Wyler von Ballmoos MC, et al. Evaluating failing Fontans for heart transplantation: predictors of mortality. Ann Thorac Surg. 2009;88:558–64.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Warnes CA. Adult congenital heart disease. J Am Coll Cardiol. 2009;54:1903–10.PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    Anderson KR, Lie JT. The right ventricular myocardium in Ebstein’s anomaly: a morphometric histopathologic study. Mayo Clin Proc. 1979;54:181–4.PubMedPubMedCentralGoogle Scholar
  91. 91.
    Kasai T, Floras JS, Bradley TD. Sleep apnea and cardiovascular disease: a bidirectional relationship. Circulation. 2012;126:1495–510.PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Somers VK, Dyken ME, Abboud FM. Sympathetic neural mechanisms in obstructive sleep apnea. J Clin Invest. 1995;96:1897–904.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Yumino D, Kasai T, Kimmerly D, et al. Differing effects of obstructive and central sleep apneas on stroke volume in patients with heart failure. Am J Respir Crit Care Med. 2013;187:433–8.PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    Kuniyoshi F, Garcia-Touchard A, Gami AS, et al. Day-night variation of acute myocardial infarction in obstructive sleep apnea. J Am Coll Cardiol. 2008;52:343–6.PubMedCrossRefPubMedCentralGoogle Scholar
  95. 95.
    Arias MA, Garcia-Rio F, Alonso-Fernandez A, et al. Obstructive sleep apnea syndrome affects left ventricular diastolic function: effects of nasal continuous positive airway pressure in men. Circulation. 2005;112:375–83.PubMedCrossRefPubMedCentralGoogle Scholar
  96. 96.
    Sofer S, Weinhouse E, Tal A, et al. Cor pulmonale due to adenoid or tonsillar hypertrophy or both in children. Chest. 1988;93:119–22.PubMedCrossRefPubMedCentralGoogle Scholar
  97. 97.
    Amin RS, Kimball TR, Bean JA, et al. Left ventricular hypertrophy and abnormal ventricular geometry in children and adolescent with obstructive sleep apnea. Am J Crit Care Respir Med. 2002;165:1395–9.CrossRefGoogle Scholar
  98. 98.
    Shivalkar B, Van De Heyning C, Kerremans M, et al. Obstructive sleep apnea syndrome. More insights on structural and functional cardiac alterations, and the effects of treatment with continuous positive airway pressure. J Am Coll Cardiol. 2006;47:1433–9.PubMedCrossRefPubMedCentralGoogle Scholar
  99. 99.
    Kaneko Y, Floras JS, Usui K, et al. Cardiovascular effects of continuous positive airway pressure in patients with heart failure and obstructive sleep apnea. N Engl J Med. 2003;348:1233–41.PubMedCrossRefPubMedCentralGoogle Scholar
  100. 100.
    Vieillard-Baron A, Loubieres Y, Schmitt J-M, et al. Cyclic changes in right ventricular output impedance during mechanical ventilation. J Appl Physiol. 1999;87:1644–50.PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    Jardin F, Viellard-Baron A. Right ventricular function and positive pressure ventilation in clinical practice: from hemodynamic subsets to respirator settings. Intensive Care Med. 2003;29:1426–34.PubMedCrossRefPubMedCentralGoogle Scholar
  102. 102.
    Bone R. The ARDS lung: new insights from computed tomography. JAMA. 1993;269:2134–5.PubMedCrossRefPubMedCentralGoogle Scholar
  103. 103.
    Gattinoni L, Marini JJ, Pesenti A, et al. The “baby lung” became an adult. Intensive Care Med. 2016;42:663–73.PubMedCrossRefPubMedCentralGoogle Scholar
  104. 104.
    Price LC, McAuley DF, Marino PS, et al. Pathophysiology of pulmonary hypertension in acute lung injury. Am J Physiol Lung Cell Mol Physiol. 2010;302:L803–15.CrossRefGoogle Scholar
  105. 105.
    Hill NS, Roberts K, Preston I. Editorial. Pulmonary vasculopathy in acute respiratory distress syndrome. Something new, something old…. Am J Respir Crit Care Med. 2010;182:1093–7.PubMedCrossRefPubMedCentralGoogle Scholar
  106. 106.
    Dessap AM, Boissier F, Leon R, et al. Prevalence and prognosis shunting across patent foramen ovale during acute respiratory distress syndrome. Crit Care Med. 2010;38:1786–92.CrossRefGoogle Scholar
  107. 107.
    Roussos C, Macklem PT. The respiratory muscles. N Engl J Med. 1982;307:786–97.PubMedCrossRefPubMedCentralGoogle Scholar
  108. 108.
    Rochester DF, Bettini G. Diaphragmatic blood flow and energy expenditure in the dog. Effects of inspiratory airflow resistance and hypercapnia. J Clin Invest. 1976;57:661–72.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Viires N, Aubier SM, Rassidakis A, et al. Regional blood flow distribution in dog during induced hypotension and low cardiac output. J Clin Invest. 1983;72:935–47.PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Hussain SNA, Roussos C. Distribution of respiratory muscle and organ blood flow during endotoxic shock in dogs. J Appl Physiol. 1985;59:1802–8.PubMedCrossRefPubMedCentralGoogle Scholar
  111. 111.
    Thomas R, Stephane P. Prefrontal cortex oxygenation and neuromuscular responses to exhaustive exercise. Eur J Appl Physiol. 2008;102:153–63.PubMedCrossRefPubMedCentralGoogle Scholar
  112. 112.
    Rooks CR, Thom NJ, McCully KK, et al. Effects of incremental exercise on cerebral oxygenation measured by near-infrared spectroscopy: a systematic review. Prog Neurobiol. 2010;92:134–50.PubMedCrossRefPubMedCentralGoogle Scholar
  113. 113.
    Madsen PL, Nielsen HB, Christiansen P. Well-being and cerebral oxygen saturation during acute heart failure in humans. Clin Physiol. 2000;20:158–64.PubMedCrossRefPubMedCentralGoogle Scholar
  114. 114.
    Choi B-R, Kim JS, Yang YJ, et al. Factors associated with decreased cerebral blood flow in congestive heart failure secondary to idiopathic dilated cardiomyopathy. Am J Cardiol. 2006;97:1365–9.PubMedCrossRefPubMedCentralGoogle Scholar
  115. 115.
    Gruhn N, Larsen FS, Boesgaard S, et al. Cerebral flood flow in patients with chronic heart failure before and after heart transplantation. Stroke. 2001;32:2530–3.PubMedCrossRefPubMedCentralGoogle Scholar
  116. 116.
    Fu T-C, Wang C-H, Hsu C-C, et al. Suppression of cerebral hemodynamics is associated with reduced functional capacity in patients with heart failure. Am J Physiol Heart Circ Physiol. 2011;300:H1545–55.PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Koike A, Hoshimoto M, Tajima A, et al. Critical level of cerebral oxygenation during exercise in patients with left ventricular dysfunction. Circ J. 2006;70:1457–61.PubMedCrossRefPubMedCentralGoogle Scholar
  118. 118.
    Koike A, Hoshimoto M, Nagayama O, et al. Cerebral oxygenation during exercise and exercise recovery in patients with idiopathic dilated cardiomyopathy. Am J Cardiol. 2004;94:821–4.PubMedCrossRefPubMedCentralGoogle Scholar
  119. 119.
    Van Bommel RJ, Marsan NA, Koppen H, et al. Effect of cardiac resynchronization therapy on cerebral blood flow. Am J Cardiol. 2010;106:73–7.PubMedCrossRefPubMedCentralGoogle Scholar
  120. 120.
    Rajagopalan B, Raine AEG, Cooper R, et al. Changes in cerebral blood flow in patients with severe congestive cardiac failure before and after captopril treatment. Am J Med. 1984;76:86–90.PubMedCrossRefPubMedCentralGoogle Scholar
  121. 121.
    Luijckx G-J, van den Berg MP. Heart failure and the brain, a wake-up call. Eur J Heart Fail. 2011;13:597–8.PubMedCrossRefPubMedCentralGoogle Scholar
  122. 122.
    Vogels RL, Oosterman JM, Laman DM, et al. Transcranial Doppler blood flow assessment in patients with mild heart failure: correlates with neuroimaging and cognitive performance. Congest Heart Fail. 2008;14:61–5.PubMedCrossRefPubMedCentralGoogle Scholar
  123. 123.
    Lee CW, Lee J-H, Kim J-J, et al. Cerebral metabolic abnormalities in congestive heart failure detected by proton magnetic resonance spectroscopy. J Am Coll Cardiol. 1999;33:1196–202.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Sections of Critical Care Medicine and CardiologyBaylor College of Medicine, Texas Children’s HospitalHoustonUSA
  2. 2.Cincinnati College of Medicine, Cincinnati Children’s Hospital Medical CenterCincinnatiUSA

Personalised recommendations